-
Article
-
Published: 30 January 2026
-
…
Scientific Reports , Article number: (2026) Cite this article
We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present whic…
-
Article
-
Published: 30 January 2026
-
…
Scientific Reports , Article number: (2026) Cite this article
We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has emerged as a non-invasive technique to probe cortical responsivity. However, interpreting TMS–EEG data is challenging due to sensory inputs generated by TMS, which cause peripherally evoked potentials (PEPs) that overlap with TMS-evoked potentials (TEPs). These sensory inputs may also modulate the cortical response, potentially distorting TEPs. To address this and evaluate methods for reducing PEP contamination, we compared two sham designs: a “PEP saturation” method, which delivers high-intensity somatosensory stimuli in both sham and real TMS to saturate PEPs in both conditions, and a “PEP individualized matching stimulus intensity calibration” method, which individually adjusts stimulus intensity to match the PEP amplitude of real TMS. In both conditions, the PEPs from sham and real TMS conditions should match, enabling the subtraction of this confounder. If the TEPs after this subtraction were not different between the two conditions this would indicate the absence of a relevant interaction between PEPs and TEPs, justifying the removal of PEPs from TEPs by subtraction. Our results showed no significant difference in TEPs within 110 ms post-stimulation after sham subtraction regardless of the sham protocol, and whether stimulating the primary motor cortex or the supplementary motor area. These findings provide evidence for the absence of a relevant interaction between TMS-related somatosensory input and TEPs, and indicate the appropriateness of the two sham protocols in removing PEPs from the TMS-EEG response.
Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request. The analysis code is publicly available on GitHub: [https://github.com/pcgordon/optimized_supraliminal_sham](https:/github.com/pcgordon/optimized_supraliminal_sham) . The codes were designed for MATLAB version 2021b and using the open-source toolbox Fieldtrip, version 20210212.
References
Ilmoniemi, R. J. et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8, 3537–3540 (1997).
Tremblay, S. et al. Clinical utility and prospective of TMS-EEG. Clin. Neurophysiol. 130, 802–844. https://doi.org/10.1016/j.clinph.2019.01.001 (2019).
Rogasch, N. C. & Fitzgerald, P. B. Assessing cortical network properties using TMS-EEG. Hum. Brain Mapp. 34, 1652–1669. https://doi.org/10.1002/hbm.22016 (2013).
Casarotto, S. et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann. Neurol. 80, 718–729. https://doi.org/10.1002/ana.24779 (2016).
Hernandez-Pavon, J. C. et al. TMS combined with EEG: recommendations and open issues for data collection and analysis. Brain Stimul. 16, 567–593. https://doi.org/10.1016/j.brs.2023.02.009 (2023).
Siebner, H. R., Conde, V., Tomasevic, L., Thielscher, A. & Bergmann, T. O. Distilling the essence of TMS-evoked EEG potentials (TEPs): A call for Securing mechanistic specificity and experimental rigor. Brain Stimul. 12, 1051–1054. https://doi.org/10.1016/j.brs.2019.03.076 (2019).
Nikouline, V., Ruohonen, J. & Ilmoniemi, R. J. The role of the coil click in TMS assessed with simultaneous EEG. Clin. Neurophysiol. 110, 1325–1328 (1999).
Conde, V. et al. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 185, 300–312. https://doi.org/10.1016/j.neuroimage.2018.10.052 (2019).
Belardinelli, P. et al. Reproducibility in TMS-EEG studies: A call for data sharing, standard procedures and effective experimental control. Brain Stimul. 12, 787–790. https://doi.org/10.1016/j.brs.2019.01.010 (2019).
Biabani, M., Fornito, A., Mutanen, T. P., Morrow, J. & Rogasch, N. C. Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain Stimul. 12, 1537–1552. https://doi.org/10.1016/j.brs.2019.07.009 (2019).
Ahn, S. & Frohlich, F. Pinging the brain with transcranial magnetic stimulation reveals cortical reactivity in time and space. Brain Stimul. 14, 304–315. https://doi.org/10.1016/j.brs.2021.01.018 (2021).
Rocchi, L. et al. Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimul. 14, 4–18. https://doi.org/10.1016/j.brs.2020.10.011 (2021).
Gordon, P. C. et al. Recording brain responses to TMS of primary motor cortex by EEG - utility of an optimized Sham procedure. Neuroimage 245, 118708. https://doi.org/10.1016/j.neuroimage.2021.118708 (2021).
Ross, J. M., Sarkar, M. & Keller, C. J. Experimental suppression of transcranial magnetic stimulation-electroencephalography sensory potentials. Hum. Brain Mapp. https://doi.org/10.1002/hbm.25990 (2022).
Ilmoniemi, R. J. & Kicic, D. Methodology for combined TMS and EEG. Brain Topogr. 22, 233–248. https://doi.org/10.1007/s10548-009-0123-4 (2010).
Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G. & Iannetti, G. D. A multisensory investigation of the functional significance of the pain matrix. Neuroimage 54, 2237–2249. https://doi.org/10.1016/j.neuroimage.2010.09.084 (2011).
Novembre, G. et al. The effect of salient stimuli on neural oscillations, isometric force, and their coupling. Neuroimage 198, 221–230. https://doi.org/10.1016/j.neuroimage.2019.05.032 (2019).
Cheng, C. H., Chan, P. S., Hsieh, Y. W. & Chen, K. F. A meta-analysis of mismatch negativity in children with attention deficit-hyperactivity disorders. Neurosci. Lett. 612, 132–137. https://doi.org/10.1016/j.neulet.2015.11.033 (2016).
Rangaswamy, M. & Porjesz, B. Understanding alcohol use disorders with neuroelectrophysiology. Handb. Clin. Neurol. 125, 383–414. https://doi.org/10.1016/b978-0-444-62619-6.00023-9 (2014).
Rosburg, T. Auditory N100 gating in patients with schizophrenia: A systematic meta-analysis. Clin. Neurophysiol. 129, 2099–2111. https://doi.org/10.1016/j.clinph.2018.07.012 (2018).
Gordon, P. C. et al. Untangling TMS-EEG responses caused by TMS versus sensory input using optimized Sham control and GABAergic challenge. J. Physiol. https://doi.org/10.1113/jp283986 (2023).
Russo, S. et al. TAAC - TMS adaptable auditory control: A universal tool to mask TMS clicks. J. Neurosci. Methods. 370, 109491. https://doi.org/10.1016/j.jneumeth.2022.109491 (2022).
Raffin, E. et al. Probing regional cortical excitability via input-output properties using transcranial magnetic stimulation and electroencephalography coupling. Hum. Brain Mapp. 41, 2741–2761. https://doi.org/10.1002/hbm.24975 (2020).
Takano, M. et al. Investigation of Spatiotemporal profiles of Single-Pulse TMS-Evoked potentials with active stimulation compared with a novel Sham condition. Biosens. (Basel). 12 https://doi.org/10.3390/bios12100814 (2022). 1.
Gordon, P. C., Song, Y., Jovellar, B., Belardinelli, P. & Ziemann, U. No evidence for interaction between TMS-EEG responses and sensory inputs. Brain Stimul. 16, 25–27. https://doi.org/10.1016/j.brs.2022.12.010 (2022).
Groppa, S. et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin. Neurophysiol. 123, 858–882. https://doi.org/10.1016/j.clinph.2012.01.010 (2012).
Fecchio, M. et al. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials. PLoS One. 12, e0184910. https://doi.org/10.1371/journal.pone.0184910 (2017).
Paus, T., Sipila, P. K. & Strafella, A. P. Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J. Neurophysiol. 86, 1983–1990. https://doi.org/10.1152/jn.2001.86.4.1983 (2001).
Beck, M. M. et al. Methodological choices matter: A systematic comparison of TMS-EEG studies targeting the primary motor cortex. Hum. Brain Mapp. 45, e70048. https://doi.org/10.1002/hbm.70048 (2024).
Mayka, M. A., Corcos, D. M., Leurgans, S. E. & Vaillancourt, D. E. Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31, 1453–1474. https://doi.org/10.1016/j.neuroimage.2006.02.004 (2006).
Chen, R., Yung, D. & Li, J. Y. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J. Neurophysiol. 89, 1256–1264. https://doi.org/10.1152/jn.00950.2002 (2003).
Romero, M. C., Davare, M., Armendariz, M. & Janssen, P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat. Commun. 10, 2642. https://doi.org/10.1038/s41467-019-10638-7 (2019).
Li, B. et al. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. Elife 6 https://doi.org/10.7554/eLife.30552 (2017). 1.
Caulfield, K. A., Li, X. & George, M. S. A reexamination of motor and prefrontal TMS in tobacco use disorder: time for personalized dosing based on electric field modeling? Clin. Neurophysiol. 132, 2199–2207. https://doi.org/10.1016/j.clinph.2021.06.015 (2021).
Casarotto, S. et al. The rt-TEP tool: real-time visualization of TMS-Evoked potentials to maximize cortical activation and minimize artifacts. J. Neurosci. Methods. 370, 109486. https://doi.org/10.1016/j.jneumeth.2022.109486 (2022).
Mancini, F. et al. Characterizing the Short-Term habituation of Event-Related evoked potentials. eNeuro 5 https://doi.org/10.1523/ENEURO.0014-18.2018 (2018). 1.
Gordon, P. C., Desideri, D., Belardinelli, P., Zrenner, C. & Ziemann, U. Comparison of cortical EEG responses to realistic Sham versus real TMS of human motor cortex. Brain Stimul. 11, 1322–1330. https://doi.org/10.1016/j.brs.2018.08.003 (2018).
Solomon, E. A. et al. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. Brain Stimul. 17, 698–712. https://doi.org/10.1016/j.brs.2024.05.014 (2024).
Trapp, N. T. et al. Dorsolateral prefrontal cortex TMS evokes responses in the subgenual anterior cingulate cortex: intracranial EEG evidence from two human cases. Brain Stimul. 18, 1202–1204. https://doi.org/10.1016/j.brs.2025.06.011 (2025).
Ross, J. M. et al. A structured ICA-based process for removing auditory evoked potentials. Sci. Rep. 12, 1391. https://doi.org/10.1038/s41598-022-05397-3 (2022).
Chowdhury, N. S. et al. The influence of sensory potentials on transcranial magnetic stimulation - Electroencephalography recordings. Clin. Neurophysiol. 140, 98–109. https://doi.org/10.1016/j.clinph.2022.05.015 (2022).
Oostenveld, R., Fries, P., Maris, E., Schoffelen, J. M. & FieldTrip Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 156869, (2011). https://doi.org/10.1155/2011/156869 (2011). 1.
Metsomaa, J. et al. Adapted beamforming: A robust and flexible approach for removing various types of artifacts from TMS-EEG data. Brain Topogr. 37, 659–683. https://doi.org/10.1007/s10548-024-01044-4 (2024).
Mutanen, T. P. et al. Recovering TMS-evoked EEG responses masked by muscle artifacts. Neuroimage 139, 157–166. https://doi.org/10.1016/j.neuroimage.2016.05.028 (2016).
Mutanen, T. P., Metsomaa, J., Liljander, S. & Ilmoniemi, R. J. Automatic and robust noise suppression in EEG and MEG: the SOUND algorithm. Neuroimage 166, 135–151. https://doi.org/10.1016/j.neuroimage.2017.10.021 (2018).
Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634. https://doi.org/10.1109/72.761722 (1999).
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194. https://doi.org/10.1006/nimg.1998.0395 (1999).
Stenroos, M. & Nummenmaa, A. Incorporating and compensating cerebrospinal fluid in Surface-Based forward models of Magneto- and electroencephalography. PLoS One. 11, e0159595. https://doi.org/10.1371/journal.pone.0159595 (2016).
Hamalainen, M. S. & Ilmoniemi, R. J. Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32, 35–42 (1994).
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178. https://doi.org/10.1038/nature18933 (2016).
Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods. 164, 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024 (2007).
Schuirmann, D. J. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 15, 657–680. https://doi.org/10.1007/BF01068419 (1987).
Pourmohamad, T. & Lee, H. K. H. Equivalence testing for multiple groups. Stat 13, e645. https://doi.org/10.1002/sta4.645 (2024).
Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863. https://doi.org/10.3389/fpsyg.2013.00863 (2013).
Lioumis, P., Kicic, D., Savolainen, P., Makela, J. P. & Kahkonen, S. Reproducibility of TMS-Evoked EEG responses. Hum. Brain Mapp. 30, 1387–1396. https://doi.org/10.1002/hbm.20608 (2009).
Song, Y. et al. Evoked EEG responses to TMS targeting regions outside the primary motor cortex and their Test-Retest reliability. Brain Topogr. 37, 19–36. https://doi.org/10.1007/s10548-023-01018-y (2024).
Boutros, N. N., Gjini, K., Urbach, H. & Pflieger, M. E. Mapping repetition suppression of the N100 evoked response to the human cerebral cortex. Biol. Psychiatry. 69, 883–889. https://doi.org/10.1016/j.biopsych.2010.12.011 (2011).
Strobel, A. et al. Novelty and target processing during an auditory novelty oddball: a simultaneous event-related potential and functional magnetic resonance imaging study. Neuroimage 40, 869–883. https://doi.org/10.1016/j.neuroimage.2007.10.065 (2008).
Ni, Z. et al. Identifying transcranial magnetic stimulation induced EEG signatures of different neuronal elements in primary motor cortex. Clin. Neurophysiol. 141, 42–52. https://doi.org/10.1016/j.clinph.2022.06.012 (2022).
Harquel, S. et al. Mapping dynamical properties of cortical microcircuits using robotized TMS and EEG: towards functional cytoarchitectonics. Neuroimage 135, 115–124. https://doi.org/10.1016/j.neuroimage.2016.05.009 (2016).
Lofberg, O., Julkunen, P., Paakkonen, A. & Karhu, J. The auditory-evoked arousal modulates motor cortex excitability. Neuroscience 274, 403–408. https://doi.org/10.1016/j.neuroscience.2014.05.060 (2014).
Tran, D. M. D., McNair, N. A., Harris, J. A. & Livesey, E. J. Expected TMS excites the motor system less effectively than unexpected stimulation. Neuroimage 226, 117541. https://doi.org/10.1016/j.neuroimage.2020.117541 (2021).
Roy, F. D. & Gorassini, M. A. Peripheral sensory activation of cortical circuits in the leg motor cortex of man. J. Physiol. 586, 4091–4105. https://doi.org/10.1113/jphysiol.2008.153726 (2008).
Lofberg, O., Julkunen, P., Kallioniemi, E., Paakkonen, A. & Karhu, J. Modulation of motor cortical excitability with auditory stimulation. J. Neurophysiol. 120, 920–925. https://doi.org/10.1152/jn.00186.2017 (2018).
Capozio, A., Chakrabarty, S. & Astill, S. The effect of sound and stimulus expectation on transcranial magnetic Stimulation-Elicited motor evoked potentials. Brain Topogr. 34, 720–730. https://doi.org/10.1007/s10548-021-00867-9 (2021).
Herring, J. D., Thut, G., Jensen, O. & Bergmann, T. O. Attention modulates TMS-Locked alpha oscillations in the visual cortex. J. Neurosci. 35, 14435–14447. https://doi.org/10.1523/JNEUROSCI.1833-15.2015 (2015).
Corsi-Cabrera, M., Arce, C., Rio-Portilla, D., Perez-Garci, I. Y., Guevara, M. A. & E. & Amplitude reduction in visual event-related potentials as a function of sleep deprivation. Sleep 22, 181–189 (1999).
Iemi, L. et al. Multiple mechanisms link prestimulus neural oscillations to sensory responses. Elife 8 https://doi.org/10.7554/eLife.43620 (2019).
Funding
Open Access funding enabled and organized by Projekt DEAL. PCG reports receiving funding from the German Research Foundation (Deutsche Forschungsgemeinschaft - DFG - project number 466 458 984). UZ was supported by funding from the European Research Council (ERC Synergy) under the European Union’s Horizon 2020 research and innovation programme (ConnectToBrain; grant agreement No. 810377).
Author information
Authors and Affiliations
Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
Pedro C. Gordon, Paolo Belardinelli & Ulf Ziemann 1.
Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
Pedro C. Gordon, Paolo Belardinelli & Ulf Ziemann 1.
Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
Johanna Metsomaa 1.
BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
Johanna Metsomaa 1.
Center for Mind/Brain Sciences—CIMeC, University of Trento, Trento, I-38123, Italy
Paolo Belardinelli
Authors
- Pedro C. Gordon
- Johanna Metsomaa
- Paolo Belardinelli
- Ulf Ziemann
Contributions
PCG, and UZ designed the study. PCG carried out the data acquisition. JM contributed to the TMS–EEG data processing pipeline. PB created the MRI based head models. PCG analyzed the experimental data and drafted the manuscript. All authors contributed to the writing of the manuscript and approved its final version. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.
Corresponding author
Correspondence to Ulf Ziemann.
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethics approval
and Informed Consent Statement.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Gordon, P.C., Metsomaa, J., Belardinelli, P. et al. Investigating the effects of TMS-related somatosensory inputs on TMS-evoked potentials provides evidence against significant interaction. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37418-w
Received: 12 October 2025
Accepted: 21 January 2026
Published: 30 January 2026
DOI: https://doi.org/10.1038/s41598-026-37418-w