CHMLib 0.40a Integer Overflow in _unmarshal_int32 / _unmarshal_uint32 During CHM Header Parsing
seclists.orgยท2d
๐Ÿ”งError Recovery
Cve-2025-43330: breaking out of a sandbox using font files
bsssq.xyzยท12hยท
Discuss: Hacker News
๐Ÿ’ปTerminal Emulators
From Legal Documents to Knowledge Graphs
neo4j.comยท4dยท
Discuss: Hacker News
๐Ÿ“ˆEarley Parsing
Is Recursion in LLMs a Path to Efficiency and Quality?
pub.towardsai.netยท2d
๐ŸชœRecursive Descent
Pre-viva Talk - 02/10/2025
informatics.ed.ac.ukยท2d
๐Ÿง Semantic Parsing
Verlog: A Multi-turn RL framework for LLM agents
blog.ml.cmu.eduยท2d
๐ŸŽญErlang OTP
Secrets of Chinese AI Model DeepSeek Revealed in Landmark Paper
scientificamerican.comยท6h
๐ŸชœRecursive Descent
Is there a way to FINETUNE a TTS model LOCALLY to learn sound effects?
reddit.comยท1dยท
Discuss: r/LocalLLaMA
๐Ÿ”„Incremental Tokenizers
Automated Generation of Research Workflows from Academic Papers: A Full-text Mining Framework
arxiv.orgยท1d
๐Ÿ—‚๏ธTerm Indexing
DeepSeek-R1 on Nature: How Pure Reinforcement Learning Unlocks LLM Reasoning
reddit.comยท4hยท
Discuss: r/LocalLLaMA
๐ŸชœRecursive Descent
ActiveVLN: Towards Active Exploration via Multi-Turn RL in Vision-and-Language Navigation
arxiv.orgยท1d
๐ŸŒŠLoop Invariant Motion
Ancient Scripts, Modern AI: Bridging the Divide with Morphology-Aware Tokenization by Arvind Sundararajan
dev.toยท4dยท
Discuss: DEV
โšกTokenizer Benchmarks
Low-resourced languages get jailbroken more. Can SAEs explain why?
lesswrong.comยท1d
๐ŸŒฑTiny Languages
Metacognitive Reuse: Turning Recurring LLM Reasoning Into Concise Behaviors
arxiv.orgยท1d
๐ŸชœRecursive Descent
ZTree: A Subgroup Identification Based Decision Tree Learning Framework
arxiv.orgยท1d
๐ŸŒณTree Algorithms
Analogy-Driven Financial Chain-of-Thought (AD-FCoT): A Prompting Approach for Financial Sentiment Analysis
arxiv.orgยท1d
๐Ÿ”Tokenizers
Extending AI Agents by Adding Infinite Context Memory
github.comยท4hยท
Discuss: DEV
๐Ÿท๏ธAttribute Grammars
RadarLLM: Adapting Pretrained Large Language Models for Marine Radar Target Detection with Preference-aware Loss
arxiv.orgยท2d
๐Ÿ“ŠLR Parsing
Leveraging Large Language Models to Effectively Generate Visual Data for Canine Musculoskeletal Diagnoses
arxiv.orgยท1d
๐ŸŒฑMinimal ML