Building AI-powered applications has never been more accessible. With the Vercel AI SDK, you can create sophisticated streaming chat interfaces, text completion systems, and AI-assisted features in your Next.js apps with remarkably little boilerplate.
But here’s the challenge: the SDK is evolving rapidly, documentation is scattered across versions, and most tutorials only scratch the surface. If you’ve tried integrating OpenAI, Anthropic, or other LLM providers into your web app and found yourself drowning in streaming complexity, token management, and state synchronization—this guide is for you.
In this comprehensive deep-dive, we’ll build a production-ready AI chat application from scratch, covering everything from basic hooks to advanced patterns like tool calling, multi-model ro…
Building AI-powered applications has never been more accessible. With the Vercel AI SDK, you can create sophisticated streaming chat interfaces, text completion systems, and AI-assisted features in your Next.js apps with remarkably little boilerplate.
But here’s the challenge: the SDK is evolving rapidly, documentation is scattered across versions, and most tutorials only scratch the surface. If you’ve tried integrating OpenAI, Anthropic, or other LLM providers into your web app and found yourself drowning in streaming complexity, token management, and state synchronization—this guide is for you.
In this comprehensive deep-dive, we’ll build a production-ready AI chat application from scratch, covering everything from basic hooks to advanced patterns like tool calling, multi-model routing, and rate limiting. By the end, you’ll have a rock-solid foundation for any AI feature you want to build.
Why Vercel AI SDK?
Before diving into code, let’s understand why the Vercel AI SDK has become the go-to choice for AI integration in React applications.
The Streaming Problem
When you call an LLM API directly, you get a response only after the entire generation is complete. For a 500-token response, that’s 5-10 seconds of waiting. Users hate this.
// The naive approach - terrible UX
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages: [{ role: 'user', content: 'Explain quantum computing' }],
});
// User stares at loading spinner for 8 seconds...
console.log(response.choices[0].message.content);
Streaming solves this by sending tokens as they’re generated. But implementing proper streaming in React is surprisingly complex:
- Managing
ReadableStreamfrom the API - Parsing SSE (Server-Sent Events) or newline-delimited JSON
- Updating React state without causing re-render waterfalls
- Handling abort signals for cancellation
- Managing loading, error, and completion states
- Synchronizing client and server state
The Vercel AI SDK abstracts all of this into simple, declarative hooks.
Provider Agnostic Architecture
One of the SDK’s killer features is its unified interface across providers:
import { openai } from '@ai-sdk/openai';
import { anthropic } from '@ai-sdk/anthropic';
import { google } from '@ai-sdk/google';
// Same function signature, different providers
const result = await generateText({
model: openai('gpt-4-turbo'),
// or: model: anthropic('claude-3-opus'),
// or: model: google('gemini-pro'),
prompt: 'Explain quantum computing',
});
Switch providers with a single line change. No refactoring required.
Core Concepts: AI SDK Architecture
The Vercel AI SDK is split into three main packages:
1. AI SDK Core (ai)
The foundation package providing:
generateText()- Generate text with full resultstreamText()- Stream text generationgenerateObject()- Generate structured JSONstreamObject()- Stream structured JSON generationembed()- Generate embeddingsembedMany()- Batch embeddings
2. AI SDK UI (@ai-sdk/react)
React hooks for building UIs:
useChat()- Full chat interface managementuseCompletion()- Single-turn text completionuseObject()- Streaming structured datauseAssistant()- OpenAI Assistants API integration
3. Provider Packages
Model implementations:
@ai-sdk/openai- OpenAI, Azure OpenAI@ai-sdk/anthropic- Claude models@ai-sdk/google- Gemini models@ai-sdk/mistral- Mistral AI@ai-sdk/amazon-bedrock- AWS Bedrock- And many community providers...
Setting Up: Project Bootstrap
Let’s create a production-ready project structure:
npx create-next-app@latest ai-chat-app --typescript --tailwind --app
cd ai-chat-app
# Install AI SDK packages
npm install ai @ai-sdk/openai @ai-sdk/anthropic
# Optional: UI components
npm install @radix-ui/react-scroll-area lucide-react
Environment Setup
# .env.local
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
Project Structure
src/
├── app/
│ ├── api/
│ │ └── chat/
│ │ └── route.ts # Chat API endpoint
│ ├── page.tsx # Main chat UI
│ └── layout.tsx
├── components/
│ ├── chat/
│ │ ├── ChatContainer.tsx
│ │ ├── MessageList.tsx
│ │ ├── MessageBubble.tsx
│ │ └── ChatInput.tsx
│ └── ui/
│ └── Button.tsx
├── lib/
│ ├── ai/
│ │ ├── models.ts # Model configurations
│ │ └── prompts.ts # System prompts
│ └── utils.ts
└── types/
└── chat.ts
Building the Chat API: Server-Side Implementation
The API route is where the magic happens. Let’s build a robust chat endpoint:
Basic Chat Route
// src/app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';
import { streamText } from 'ai';
export const runtime = 'edge'; // Enable edge runtime for lower latency
export async function POST(req: Request) {
const { messages } = await req.json();
const result = streamText({
model: openai('gpt-4-turbo'),
messages,
system: `You are a helpful AI assistant. Be concise and clear in your responses.`,
});
return result.toDataStreamResponse();
}
That’s it for a basic chat! But production apps need more...
Production-Ready Chat Route
// src/app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';
import { anthropic } from '@ai-sdk/anthropic';
import { streamText, convertToCoreMessages } from 'ai';
import { z } from 'zod';
export const runtime = 'edge';
export const maxDuration = 30; // Maximum execution time
// Request validation schema
const chatRequestSchema = z.object({
messages: z.array(z.object({
role: z.enum(['user', 'assistant', 'system']),
content: z.string(),
})),
model: z.enum(['gpt-4-turbo', 'claude-3-opus']).default('gpt-4-turbo'),
temperature: z.number().min(0).max(2).default(0.7),
});
// Model registry
const models = {
'gpt-4-turbo': openai('gpt-4-turbo'),
'claude-3-opus': anthropic('claude-3-opus-20240229'),
};
const SYSTEM_PROMPT = `You are an expert AI assistant specializing in software development.
Guidelines:
- Provide accurate, well-structured responses
- Include code examples when relevant
- Cite sources when making factual claims
- Admit uncertainty rather than guessing
- Keep responses concise but comprehensive`;
export async function POST(req: Request) {
try {
const body = await req.json();
const { messages, model, temperature } = chatRequestSchema.parse(body);
// Rate limiting check (implement your own logic)
const clientIP = req.headers.get('x-forwarded-for') || 'unknown';
// await checkRateLimit(clientIP);
const result = streamText({
model: models[model],
messages: convertToCoreMessages(messages),
system: SYSTEM_PROMPT,
temperature,
maxTokens: 4096,
// Abort signal for client disconnection
abortSignal: req.signal,
// Callbacks for logging/analytics
onFinish: async ({ text, usage }) => {
console.log(`Completed: ${usage.totalTokens} tokens`);
// await logUsage(usage);
},
});
return result.toDataStreamResponse();
} catch (error) {
if (error instanceof z.ZodError) {
return new Response(JSON.stringify({ error: 'Invalid request', details: error.errors }), {
status: 400,
headers: { 'Content-Type': 'application/json' },
});
}
console.error('Chat API Error:', error);
return new Response(JSON.stringify({ error: 'Internal server error' }), {
status: 500,
headers: { 'Content-Type': 'application/json' },
});
}
}
Building the Chat UI: useChat Hook Deep Dive
The useChat hook is the heart of the client-side implementation:
Basic Usage
// src/app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';
export default function ChatPage() {
const { messages, input, handleInputChange, handleSubmit, isLoading } = useChat();
return (
<div className="flex flex-col h-screen max-w-2xl mx-auto p-4">
<div className="flex-1 overflow-y-auto space-y-4">
{messages.map((message) => (
<div
key={message.id}
className={`p-4 rounded-lg ${
message.role === 'user'
? 'bg-blue-100 ml-auto max-w-[80%]'
: 'bg-gray-100 mr-auto max-w-[80%]'
}`}
>
<p className="whitespace-pre-wrap">{message.content}</p>
</div>
))}
</div>
<form onSubmit={handleSubmit} className="flex gap-2 pt-4">
<input
value={input}
onChange={handleInputChange}
placeholder="Type your message..."
className="flex-1 p-3 border rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500"
disabled={isLoading}
/>
<button
type="submit"
disabled={isLoading || !input.trim()}
className="px-6 py-3 bg-blue-500 text-white rounded-lg hover:bg-blue-600 disabled:opacity-50"
>
{isLoading ? 'Sending...' : 'Send'}
</button>
</form>
</div>
);
}
Advanced useChat Configuration
'use client';
import { useChat, Message } from '@ai-sdk/react';
import { useState, useCallback, useRef, useEffect } from 'react';
export default function AdvancedChatPage() {
const [selectedModel, setSelectedModel] = useState('gpt-4-turbo');
const scrollRef = useRef<HTMLDivElement>(null);
const {
messages,
input,
setInput,
handleInputChange,
handleSubmit,
isLoading,
error,
reload,
stop,
append,
setMessages,
} = useChat({
api: '/api/chat',
// Send additional data with each request
body: {
model: selectedModel,
temperature: 0.7,
},
// Initial messages (e.g., from database)
initialMessages: [],
// Generate unique IDs
generateId: () => crypto.randomUUID(),
// Called when response starts streaming
onResponse: (response) => {
if (!response.ok) {
console.error('Response error:', response.status);
}
},
// Called when streaming completes
onFinish: (message) => {
console.log('Message completed:', message.id);
// Save to database, analytics, etc.
},
// Called on error
onError: (error) => {
console.error('Chat error:', error);
},
});
// Auto-scroll to bottom
useEffect(() => {
if (scrollRef.current) {
scrollRef.current.scrollTop = scrollRef.current.scrollHeight;
}
}, [messages]);
// Programmatic message append
const sendQuickMessage = useCallback((content: string) => {
append({ role: 'user', content });
}, [append]);
// Clear chat history
const clearChat = useCallback(() => {
setMessages([]);
}, [setMessages]);
// Retry last message
const retryLast = useCallback(() => {
if (messages.length >= 2) {
reload();
}
}, [messages, reload]);
return (
<div className="flex flex-col h-screen max-w-3xl mx-auto">
{/* Header with controls */}
<header className="flex items-center justify-between p-4 border-b">
<h1 className="text-xl font-bold">AI Chat</h1>
<div className="flex items-center gap-2">
<select
value={selectedModel}
onChange={(e) => setSelectedModel(e.target.value)}
className="p-2 border rounded"
>
<option value="gpt-4-turbo">GPT-4 Turbo</option>
<option value="claude-3-opus">Claude 3 Opus</option>
</select>
<button onClick={clearChat} className="p-2 text-gray-500 hover:text-gray-700">
Clear
</button>
</div>
</header>
{/* Messages */}
<div ref={scrollRef} className="flex-1 overflow-y-auto p-4 space-y-4">
{messages.length === 0 && (
<div className="text-center text-gray-500 mt-8">
<p className="text-lg mb-4">How can I help you today?</p>
<div className="flex flex-wrap justify-center gap-2">
{['Explain React Server Components', 'Debug my code', 'Write a function'].map((prompt) => (
<button
key={prompt}
onClick={() => sendQuickMessage(prompt)}
className="px-4 py-2 bg-gray-100 rounded-full hover:bg-gray-200 text-sm"
>
{prompt}
</button>
))}
</div>
</div>
)}
{messages.map((message) => (
<MessageBubble key={message.id} message={message} />
))}
{isLoading && (
<div className="flex items-center gap-2 text-gray-500">
<div className="animate-pulse">●</div>
<span>AI is thinking...</span>
<button onClick={stop} className="text-red-500 text-sm">
Stop
</button>
</div>
)}
{error && (
<div className="p-4 bg-red-50 text-red-600 rounded-lg">
<p>Error: {error.message}</p>
<button onClick={retryLast} className="text-sm underline">
Retry
</button>
</div>
)}
</div>
{/* Input */}
<form onSubmit={handleSubmit} className="p-4 border-t">
<div className="flex gap-2">
<input
value={input}
onChange={handleInputChange}
placeholder="Type your message..."
className="flex-1 p-3 border rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500"
disabled={isLoading}
/>
<button
type="submit"
disabled={isLoading || !input.trim()}
className="px-6 py-3 bg-blue-500 text-white rounded-lg hover:bg-blue-600 disabled:opacity-50 transition-colors"
>
Send
</button>
</div>
</form>
</div>
);
}
function MessageBubble({ message }: { message: Message }) {
const isUser = message.role === 'user';
return (
<div className={`flex ${isUser ? 'justify-end' : 'justify-start'}`}>
<div
className={`max-w-[80%] p-4 rounded-2xl ${
isUser
? 'bg-blue-500 text-white rounded-br-md'
: 'bg-gray-100 text-gray-900 rounded-bl-md'
}`}
>
<p className="whitespace-pre-wrap">{message.content}</p>
</div>
</div>
);
}
Tool Calling: Extending AI Capabilities
One of the most powerful features of modern LLMs is tool calling (function calling). The AI SDK makes this seamless:
Defining Tools
// src/lib/ai/tools.ts
import { z } from 'zod';
import { tool } from 'ai';
export const weatherTool = tool({
description: 'Get the current weather for a location',
parameters: z.object({
location: z.string().describe('City name, e.g., "San Francisco"'),
unit: z.enum(['celsius', 'fahrenheit']).default('celsius'),
}),
execute: async ({ location, unit }) => {
// In production, call a real weather API
const temp = Math.floor(Math.random() * 30) + 5;
return {
location,
temperature: temp,
unit,
condition: 'Partly cloudy',
};
},
});
export const searchTool = tool({
description: 'Search the web for current information',
parameters: z.object({
query: z.string().describe('The search query'),
}),
execute: async ({ query }) => {
// In production, use a search API
return {
results: [
{ title: `Result for: ${query}`, url: 'https://example.com' },
],
};
},
});
export const calculatorTool = tool({
description: 'Perform mathematical calculations',
parameters: z.object({
expression: z.string().describe('Mathematical expression, e.g., "2 + 2 * 3"'),
}),
execute: async ({ expression }) => {
try {
// WARNING: eval is dangerous in production - use a proper math parser
const result = Function(`"use strict"; return (${expression})`)();
return { expression, result };
} catch {
return { expression, error: 'Invalid expression' };
}
},
});
Using Tools in the API Route
// src/app/api/chat/route.ts
import { openai } from '@ai-sdk/openai';
import { streamText } from 'ai';
import { weatherTool, searchTool, calculatorTool } from '@/lib/ai/tools';
export async function POST(req: Request) {
const { messages } = await req.json();
const result = streamText({
model: openai('gpt-4-turbo'),
messages,
tools: {
weather: weatherTool,
search: searchTool,
calculator: calculatorTool,
},
// Allow multiple tool calls in sequence
maxSteps: 5,
});
return result.toDataStreamResponse();
}
Handling Tool Results in UI
'use client';
import { useChat } from '@ai-sdk/react';
export default function ChatWithTools() {
const { messages, input, handleInputChange, handleSubmit } = useChat();
return (
<div>
{messages.map((message) => (
<div key={message.id}>
{message.role === 'user' && <UserMessage content={message.content} />}
{message.role === 'assistant' && (
<div>
{/* Display tool invocations */}
{message.toolInvocations?.map((tool) => (
<ToolCard key={tool.toolCallId} tool={tool} />
))}
{/* Display text content */}
{message.content && <AssistantMessage content={message.content} />}
</div>
)}
</div>
))}
<form onSubmit={handleSubmit}>
<input value={input} onChange={handleInputChange} />
<button type="submit">Send</button>
</form>
</div>
);
}
function ToolCard({ tool }: { tool: any }) {
return (
<div className="p-3 my-2 bg-purple-50 border border-purple-200 rounded-lg">
<div className="text-sm font-medium text-purple-700">
🔧 {tool.toolName}
</div>
{tool.state === 'result' && (
<pre className="mt-2 text-xs bg-white p-2 rounded overflow-x-auto">
{JSON.stringify(tool.result, null, 2)}
</pre>
)}
</div>
);
}
Structured Output: generateObject and useObject
Sometimes you need the AI to return structured data, not just text:
Server-Side Structured Generation
// src/app/api/analyze/route.ts
import { openai } from '@ai-sdk/openai';
import { generateObject } from 'ai';
import { z } from 'zod';
const sentimentSchema = z.object({
sentiment: z.enum(['positive', 'negative', 'neutral']),
confidence: z.number().min(0).max(1),
keywords: z.array(z.string()),
summary: z.string(),
});
export async function POST(req: Request) {
const { text } = await req.json();
const { object } = await generateObject({
model: openai('gpt-4-turbo'),
schema: sentimentSchema,
prompt: `Analyze the sentiment of this text: "${text}"`,
});
return Response.json(object);
}
Client-Side Streaming Objects
'use client';
import { useObject } from '@ai-sdk/react';
import { z } from 'zod';
const recipeSchema = z.object({
name: z.string(),
ingredients: z.array(z.object({
item: z.string(),
amount: z.string(),
})),
steps: z.array(z.string()),
prepTime: z.number(),
cookTime: z.number(),
});
export default function RecipeGenerator() {
const { object, submit, isLoading } = useObject({
api: '/api/generate-recipe',
schema: recipeSchema,
});
return (
<div>
<button onClick={() => submit({ dish: 'chocolate cake' })}>
Generate Recipe
</button>
{isLoading && <p>Generating...</p>}
{object && (
<div>
<h2>{object.name}</h2>
{object.ingredients && (
<ul>
{object.ingredients.map((ing, i) => (
<li key={i}>{ing.amount} {ing.item}</li>
))}
</ul>
)}
{object.steps && (
<ol>
{object.steps.map((step, i) => (
<li key={i}>{step}</li>
))}
</ol>
)}
</div>
)}
</div>
);
}
Production Patterns: Rate Limiting, Caching, and Error Handling
Rate Limiting with Upstash Redis
// src/lib/rate-limit.ts
import { Ratelimit } from '@upstash/ratelimit';
import { Redis } from '@upstash/redis';
const redis = new Redis({
url: process.env.UPSTASH_REDIS_REST_URL!,
token: process.env.UPSTASH_REDIS_REST_TOKEN!,
});
export const rateLimiter = new Ratelimit({
redis,
limiter: Ratelimit.slidingWindow(10, '1 m'), // 10 requests per minute
analytics: true,
});
// Usage in API route
export async function POST(req: Request) {
const ip = req.headers.get('x-forwarded-for') ?? 'anonymous';
const { success, limit, reset, remaining } = await rateLimiter.limit(ip);
if (!success) {
return new Response('Rate limit exceeded', {
status: 429,
headers: {
'X-RateLimit-Limit': limit.toString(),
'X-RateLimit-Remaining': remaining.toString(),
'X-RateLimit-Reset': reset.toString(),
},
});
}
// ... continue with chat logic
}
Response Caching for Common Queries
// src/lib/cache.ts
import { Redis } from '@upstash/redis';
import { generateText } from 'ai';
import { openai } from '@ai-sdk/openai';
import crypto from 'crypto';
const redis = new Redis({
url: process.env.UPSTASH_REDIS_REST_URL!,
token: process.env.UPSTASH_REDIS_REST_TOKEN!,
});
function hashPrompt(prompt: string): string {
return crypto.createHash('sha256').update(prompt).digest('hex');
}
export async function getCachedOrGenerate(prompt: string): Promise<string> {
const cacheKey = `ai:${hashPrompt(prompt)}`;
// Check cache
const cached = await redis.get<string>(cacheKey);
if (cached) {
console.log('Cache hit!');
return cached;
}
// Generate new response
const { text } = await generateText({
model: openai('gpt-4-turbo'),
prompt,
});
// Cache for 1 hour
await redis.set(cacheKey, text, { ex: 3600 });
return text;
}
Comprehensive Error Handling
// src/lib/ai/error-handling.ts
import { AIError } from 'ai';
export function handleAIError(error: unknown): Response {
console.error('AI Error:', error);
if (error instanceof AIError) {
switch (error.code) {
case 'rate_limit_exceeded':
return new Response(
JSON.stringify({
error: 'Rate limit exceeded',
message: 'Please wait a moment before trying again.',
retryAfter: 60,
}),
{ status: 429 }
);
case 'context_length_exceeded':
return new Response(
JSON.stringify({
error: 'Message too long',
message: 'Please shorten your message or start a new conversation.',
}),
{ status: 400 }
);
case 'invalid_api_key':
return new Response(
JSON.stringify({
error: 'Configuration error',
message: 'AI service is temporarily unavailable.',
}),
{ status: 503 }
);
default:
return new Response(
JSON.stringify({
error: 'AI Error',
message: error.message,
}),
{ status: 500 }
);
}
}
return new Response(
JSON.stringify({
error: 'Internal Error',
message: 'An unexpected error occurred.',
}),
{ status: 500 }
);
}
Multi-Model Routing: Smart Provider Selection
For production apps, you might want to route requests to different models based on the task:
// src/lib/ai/router.ts
import { openai } from '@ai-sdk/openai';
import { anthropic } from '@ai-sdk/anthropic';
import { google } from '@ai-sdk/google';
import { streamText } from 'ai';
type TaskType = 'code' | 'creative' | 'analysis' | 'general';
function detectTaskType(message: string): TaskType {
const codeKeywords = ['code', 'function', 'debug', 'implement', 'typescript', 'python'];
const creativeKeywords = ['write', 'story', 'creative', 'imagine', 'poem'];
const analysisKeywords = ['analyze', 'compare', 'evaluate', 'research', 'explain'];
const lowerMessage = message.toLowerCase();
if (codeKeywords.some(k => lowerMessage.includes(k))) return 'code';
if (creativeKeywords.some(k => lowerMessage.includes(k))) return 'creative';
if (analysisKeywords.some(k => lowerMessage.includes(k))) return 'analysis';
return 'general';
}
function selectModel(taskType: TaskType) {
switch (taskType) {
case 'code':
return anthropic('claude-3-opus-20240229'); // Best for coding
case 'creative':
return openai('gpt-4-turbo'); // Great for creative writing
case 'analysis':
return google('gemini-1.5-pro'); // Good for long-context analysis
default:
return openai('gpt-4-turbo'); // General purpose
}
}
export async function routedChat(messages: any[]) {
const lastUserMessage = messages.filter(m => m.role === 'user').pop();
const taskType = detectTaskType(lastUserMessage?.content ?? '');
const model = selectModel(taskType);
console.log(`Routing to ${taskType} model`);
return streamText({
model,
messages,
});
}
Testing AI Applications
Testing AI applications requires a different approach:
// __tests__/chat.test.ts
import { describe, it, expect, vi } from 'vitest';
import { render, screen, fireEvent, waitFor } from '@testing-library/react';
import ChatPage from '@/app/page';
// Mock the useChat hook
vi.mock('@ai-sdk/react', () => ({
useChat: () => ({
messages: [
{ id: '1', role: 'user', content: 'Hello' },
{ id: '2', role: 'assistant', content: 'Hi there!' },
],
input: '',
handleInputChange: vi.fn(),
handleSubmit: vi.fn(),
isLoading: false,
error: null,
}),
}));
describe('ChatPage', () => {
it('renders messages correctly', () => {
render(<ChatPage />);
expect(screen.getByText('Hello')).toBeInTheDocument();
expect(screen.getByText('Hi there!')).toBeInTheDocument();
});
it('disables send button when loading', async () => {
vi.mocked(useChat).mockReturnValue({
// ... other props
isLoading: true,
} as any);
render(<ChatPage />);
expect(screen.getByRole('button', { name: /send/i })).toBeDisabled();
});
});
Deployment Considerations
Vercel Deployment
// next.config.js
/** @type {import('next').NextConfig} */
const nextConfig = {
experimental: {
serverComponentsExternalPackages: ['@ai-sdk/openai'],
},
};
module.exports = nextConfig;
Environment Variables on Vercel
# Set these in Vercel Dashboard > Settings > Environment Variables
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
UPSTASH_REDIS_REST_URL=https://...
UPSTASH_REDIS_REST_TOKEN=...
Edge Runtime Considerations
- Edge functions have a 25MB size limit
- No Node.js APIs (use Web APIs instead)
- Limited execution time (30s on Vercel)
- Perfect for low-latency AI responses
Conclusion
The Vercel AI SDK dramatically simplifies building AI-powered applications. We’ve covered:
- Core concepts: Streaming, provider architecture, hooks
- useChat deep dive: Full configuration, state management, UI patterns
- Tool calling: Extending AI capabilities with custom functions
- Structured output: Type-safe AI responses with schemas
- Production patterns: Rate limiting, caching, error handling
- Multi-model routing: Smart provider selection
- Testing and deployment: Best practices for production
The key to successful AI integration isn’t just using the right tools—it’s understanding the patterns that make applications reliable, performant, and user-friendly.
Quick Reference
// Basic chat
const { messages, input, handleSubmit, isLoading } = useChat();
// With options
const chat = useChat({
api: '/api/chat',
body: { model: 'gpt-4' },
onFinish: (message) => saveToDb(message),
onError: (error) => toast.error(error.message),
});
// Programmatic control
chat.append({ role: 'user', content: 'Hello' });
chat.reload();
chat.stop();
chat.setMessages([]);
Start simple, iterate based on your needs, and don’t forget to monitor token usage—your wallet will thank you.
Building something cool with the Vercel AI SDK? The ecosystem is growing rapidly, with new providers and features launching regularly. Keep an eye on the official documentation and GitHub releases to stay up to date with the latest capabilities.
⚡ Speed Tip: Read the original post on the Pockit Blog.
Tired of slow cloud tools? Pockit.tools runs entirely in your browser with zero latency. Try the fastest JSON Formatter & Diff Checker now.