Contents
-
Virtual Weights and the Residual Stream as a Communication Channel
-
Splitting Attention Head terms into Query-Key and Output-Value Circuits
-
[Three Kinds of Composition](#three-kin…
Contents
-
Virtual Weights and the Residual Stream as a Communication Channel
-
Splitting Attention Head terms into Query-Key and Output-Value Circuits
Transformer language models are an emerging technology that is gaining increasingly broad real-world use, for example in systems like GPT-3 , LaMDA , Codex , Meena , Gopher , and similar models. However, as these models scale, their open-endedness and high capacity creates an increasing scope for unexpected and sometimes harmful behaviors. Even years after a large model is trained, both creators and users routinely discover model capabilities – including problematic behaviors – they were previously unaware of.
One avenue for addressing these issues is mechanistic interpretability, attempting to reverse engineer the detailed computations performed by transformers, similar to how a programmer might try to reverse engineer complicated binaries into human-readable source code. If this were possible, it could potentially provide a more systematic approach to explaining current safety problems, identifying new ones, and perhaps even anticipating the safety problems of powerful future models that have not yet been built. A previous project, the Distill Circuits thread , has attempted to reverse engineer vision models, but so far there hasn’t been a comparable project for transformers or language models.
In this paper, we attempt to take initial, very preliminary steps towards reverse-engineering transformers. Given the incredible complexity and size of modern language models, we have found it most fruitful to start with the simplest possible models and work our way up from there. Our aim is to discover simple algorithmic patterns, motifs, or frameworks that can subsequently be applied to larger and more complex models. Specifically, in this paper we will study transformers with two layers or less which have only attention blocks – this is in contrast to a large, modern transformer like GPT-3, which has 96 layers and alternates attention blocks with MLP blocks.
We find that by conceptualizing the operation of transformers in a new but mathematically equivalent way, we are able to make sense of these small models and gain significant understanding of how they operate internally. Of particular note, we find that specific attention heads that we term “induction heads” can explain in-context learning in these small models, and that these heads only develop in models with at least two attention layers. We also go through some examples of these heads operating in action on specific data.
We don’t attempt to apply to our insights to larger models in this first paper, but in a forthcoming paper, we will show that both our mathematical framework for understanding transformers, and the concept of induction heads, continues to be at least partially relevant for much larger and more realistic models – though we remain a very long way from being able to fully reverse engineer such models.
Summary of Results
Reverse Engineering Results
To explore the challenge of reverse engineering transformers, we reverse engineer several toy, attention-only models. In doing so we find:
- Zero layer transformers model bigram statistics. The bigram table can be accessed directly from the weights.
- One layer attention-only transformers are an ensemble of bigram and “skip-trigram” (sequences of the form "A… B C") models. The bigram and skip-trigram tables can be accessed directly from the weights, without running the model. These skip-trigrams can be surprisingly expressive. This includes implementing a kind of very simple in-context learning.
- Two layer attention-only transformers can implement much more complex algorithms using compositions of attention heads. These compositional algorithms can also be detected directly from the weights. Notably, two layer models use attention head composition to create “induction heads”, a very general in-context learning algorithm.We’ll explore induction heads in much more detail in a forthcoming paper.
- One layer and two layer attention-only transformers use very different algorithms to perform in-context learning. Two layer attention heads use qualitatively more sophisticated inference-time algorithms — in particular, a special type of attention head we call an induction head — to perform in-context-learning, forming an important transition point that will be relevant for larger models.
Conceptual Take-Aways
We’ve found that many subtle details of the transformer architecture require us to approach reverse engineering it in a pretty different way from how the InceptionV1 Circuits work . We’ll unpack each of these points in the sections below, but for now we briefly summarize. We’ll also expand on a lot of the terminology we introduce here once we get to the appropriate sections. (To be clear, we don’t intend to claim that any of these points are necessarily novel; many are implicitly or explicitly present in other papers.)
- Attention heads can be understood as independent operations, each outputting a result which is added into the residual stream. Attention heads are often described in an alternate “concatenate and multiply” formulation for computational efficiency, but this is mathematically equivalent.
- Attention-only models can be written as a sum of interpretable end-to-end functions mapping tokens to changes in logits. These functions correspond to “paths” through the model, and are linear if one freezes the attention patterns.
- Transformers have an enormous amount of linear structure. One can learn a lot simply by breaking apart sums and multiplying together chains of matrices.
- Attention heads can be understood as having two largely independent computations: a QK (“query-key”) circuit which computes the attention pattern, and an OV (“output-value”) circuit which computes how each token affects the output if attended to.
- Key, query, and value vectors can be thought of as intermediate results in the computation of the low-rank matrices W_Q^TW_K and W_OW_V. It can be useful to describe transformers without reference to them.
- Composition of attention heads greatly increases the expressivity of transformers. There are three different ways attention heads can compose, corresponding to keys, queries, and values. Key and query composition are very different from value composition.
- All components of a transformer (the token embedding, attention heads, MLP layers, and unembedding) communicate with each other by reading and writing to different subspaces of the residual stream. Rather than analyze the residual stream vectors, it can be helpful to decompose the residual stream into all these different communication channels, corresponding to paths through the model.
Transformer Overview
Before we attempt to reverse engineer transformers, it’s helpful to briefly review the high-level structure of transformers and describe how we think about them.
In many cases, we’ve found it helpful to reframe transformers in equivalent, but non-standard ways. Mechanistic interpretability requires us to break models down into human-interpretable pieces. An important first step is finding the representation which makes it easiest to reason about the model. In modern deep learning, there is — for good reason! — a lot of emphasis on computational efficiency, and our mathematical descriptions of models often mirror decisions in how one would write efficient code to run the model. But when there are many equivalent ways to represent the same computation, it is likely that the most human-interpretable representation and the most computationally efficient representation will be different.
Reviewing transformers will also let us align on terminology, which can sometimes vary. We’ll also introduce some notation in the process, but since this notation is used across many sections, we provide a detailed description of all notation in the notation appendix as a concise reference for readers.
Model Simplifications
To demonstrate the ideas in this paper in their cleanest form, we focus on "toy transformers" with some simplifications.
In most parts of this paper, we will make a very substantive change: we focus on “attention-only” transformers, which don’t have MLP layers. This is a very dramatic simplification of the transformer architecture. We’re partly motivated by the fact that circuits with attention heads present new challenges not faced by the Distill circuits work, and considering them in isolation allows us to give an especially elegant treatment of those issues. But we’ve also simply had much less success in understanding MLP layers so far; in normal transformers with both attention and MLP layers there are many circuits mediated primarily by attention heads which we can study, some of which seem very important, but the MLP portions have been much harder to get traction on. This is a major weakness of our work that we plan to focus on addressing in the future. Despite this, we will have some discussion of transformers with MLP layers in later sections.
We also make several changes that we consider to be more superficial and are mostly made for clarity and simplicity. We do not consider biases, but a model with biases can always be simulated without them by folding them into the weights and creating a dimension that is always one. Additionally, biases in attention-only transformers mostly multiply out to functionally be biases on the logits. We also ignore layer normalization. It adds a fair amount of complexity to consider explicitly, and up to a variable scaling, layer norm can be merged into adjacent weights. We also expect that, modulo some implementational annoyances, layer norm could be substituted for batch normalization (which can fully be folded into adjacent parameters).
High-Level Architecture
There are several variants of transformer language models. We focus on autoregressive, decoder-only transformer language models, such as GPT-3. (The original transformer paper had a special encoder-decoder structure to support translation, but many modern language models don’t include this.)
A transformer starts with a token embedding, followed by a series of “residual blocks”, and finally a token unembedding. Each residual block consists of an attention layer, followed by an MLP layer. Both the attention and MLP layers each “read” their input from the residual stream (by performing a linear projection), and then “write” their result to the residual stream by adding a linear projection back in. Each attention layer consists of multiple heads, which operate in parallel.
![]( VwdYU8kWnltSIbQAAlJCb4JIDSAlhBZAercRkgChxBgIKnZkUcG1oGIBG7oqothpdsTOotj7YkFF WRcLduVNCui6r3xvvm/u/PefM/85c+7MvXcAUD/OFYtzUQ0A8kQFktiQAEZySiqD9BSgQAeQgTUY yeXli1nR0REAlsH27+XddYDI2isOMq1/9v/XoskX5PMAQKIhTufn8/IgPgAAXs0TSwoAIMp48ykF YhmGFWhLYIAQL5DhTAWuluF0Bd4jt4mPZUPcBgBZlcuVZAKgdgnyjEJeJtRQ64PYScQXigBQZ0Ds m5c3iQ9xGsQ20EYMsUyfmf6DTubfNNOHNLnczCGsmIu8kAOF+eJc7rT/Mx3/u+TlSgd9WMGqmiUJ jZXNGebtZs6kcBlWhbhXlB4ZBbEWxB+EfLk9xCg1SxqaoLBHDXn5bJgzoAuxE58bGA6xIcTBotzI CCWfniEM5kAMVwg6VVjAiYdYD+IFgvygOKXNRsmkWKUvtCFDwmYp+bNcidyvzNd9aU4CS6n/OkvA UepjakVZ8UkQUyG2KBQmRkKsBrFjfk5cuNJmdFEWO3LQRiKNlcVvAXGsQBQSoNDHCjMkwbFK+7K8 /MH5YhuzhJxIJd5XkBUfqsgP1sbjyuOHc8EuCUSshEEdQX5yxOBc+ILAIMXcsWcCUUKcUueDuCAg VjEWp4pzo5X2uJkgN0TGm0Hsml8YpxyLJxbABanQxzPEBdHxijjxomxuWLQiHnwpiABsEAgYQApr OpgEsoGwo7exF94peoIBF0hAJhAAByUzOCJJ3iOC1zhQBP6ESADyh8YFyHsFoBDyX4dYxdUBZMh7 C+UjcsATiPNAOMiF91L5KNGQt0TwGDLCf3jnwsqD8ebCKuv/9/wg+51hQSZCyUgHPTLUBy2JQcRA YigxmGiLG+C+uDceAa/+sDrjTNxzcB7f7QlPCJ2Eh4RrhC7CrYnCYslPUY4BXVA/WJmL9B9zgVtB TTc8APeB6lAZ18UNgAPuCv2wcD/o2Q2ybGXcsqwwftL+2wx+eBpKO4oTBaUMo/hTbH4eqWan5jak Isv1j/lRxJo+lG/2UM/P/tk/ZJ8P2/CfLbEF2H7sDHYCO4cdxhoBAzuGNWHt2BEZHlpdj+Wra9Bb rDyeHKgj/Ie/wScry2S+U51Tj9MXRV+BYKrsHQ3Yk8TTJMLMrAIGC34RBAyOiOc4guHs5OwCgOz7 onh9vYmRfzcQ3fbv3Lw/APA5NjAwcOg7F3YMgL0ecPs3f+dsmPDToQLA2WaeVFKo4HDZhQDfEupw p+kDY2AObOB8nIE78Ab+IAiEgSgQD1LABBh9FlznEjAFzABzQSkoB0vBSrAWbACbwXawC+wDjeAw OAFOgwvgErgG7sDV0w1egD7wDnxGEISE0BA6oo+YIJaIPeKMMBFfJAiJQGKRFCQNyUREiBSZgcxD ypEKZC2yCalF9iLNyAnkHNKJ3EIeID3Ia+QTiqGqqDZqhFqhI1EmykLD0Xh0PJqJTkaL0BJ0Mboa rUF3og3oCfQCeg3tQl+g/RjAVDBdzBRzwJgYG4vCUrEMTILNwsqwSqwGq8da4HO+gnVhvdhHnIjT cQbuAFdwKJ6A8/DJ+Cx8Eb4W34434G34FfwB3od/I9AIhgR7gheBQ0gmZBKmEEoJlYSthIOEU3Av dRPeEYlEXaI10QPuxRRiNnE6cRFxHXE38Tixk/iI2E8ikfRJ9iQfUhSJSyoglZLWkHaSjpEuk7pJ H8gqZBOyMzmYnEoWkYvJleQd5KPky+Sn5M8UDYolxYsSReFTplGWULZQWigXKd2Uz1RNqjXVhxpP zabOpa6m1lNPUe9S36ioqJipeKrEqAhV5qisVtmjclblgcpHVS1VO1W26jhVqepi1W2qx1Vvqb6h 0WhWNH9aKq2AtphWSztJu0/7oEZXc1TjqPHVZqtVqTWoXVZ7qU5Rt1RnqU9QL1KvVN+vflG9V4Oi YaXB1uBqzNKo0mjWuKHRr0nXHKUZpZmnuUhzh+Y5zWdaJC0rrSAtvlaJ1matk1qP6BjdnM6m8+jz 6Fvop+jd2kRta22OdrZ2ufYu7Q7tPh0tHVedRJ2pOlU6R3S6dDFdK12Obq7uEt19utd1Pw0zGsYa Jhi2cFj9sMvD3usN1/PXE+iV6e3Wu6b3SZ+hH6Sfo79Mv1H/ngFuYGcQYzDFYL3BKYPe4drDvYfz hpcN3zf8tiFqaGcYazjdcLNhu2G/kbFRiJHYaI3RSaNeY11jf+Ns4xXGR417TOgmviZCkxUmx0ye M3QYLEYuYzWjjdFnamgaaio13WTaYfrZzNoswazYbLfZPXOqOdM8w3yFeat5n4WJxRiLGRZ1Frct KZZMyyzLVZZnLN9bWVslWc23arR6Zq1nzbEusq6zvmtDs/GzmWxTY3PVlmjLtM2xXWd7yQ61c7PL squyu2iP2rvbC+3X2XeOIIzwHCEaUTPihoOqA8uh0KHO4YGjrmOEY7Fjo+PLkRYjU0cuG3lm5Dcn N6dcpy1Od0ZpjQobVTyqZdRrZztnnnOV81UXmkuwy2yXJpdXrvauAtf1rjfd6G5j3Oa7tbp9dfdw l7jXu/d4WHikeVR73GBqM6OZi5hnPQmeAZ6zPQ97fvRy9yrw2uf1l7eDd473Du9no61HC0ZvGf3I x8yH67PJp8uX4Zvmu9G3y8/Uj+tX4/fQ39yf77/V/ynLlpXN2sl6GeAUIAk4GPCe7cWeyT4eiAWG BJYFdgRpBSUErQ26H2wWnBlcF9wX4hYyPeR4KCE0PHRZ6A2OEYfHqeX0hXmEzQxrC1cNjwtfG/4w wi5CEtEyBh0TNmb5mLuRlpGiyMYoEMWJWh51L9o6enL0oRhiTHRMVcyT2FGxM2LPxNHjJsbtiHsX HxC/JP5Ogk2CNKE1UT1xXGJt4vukwKSKpK7kkckzky+kGKQIU5pSSamJqVtT+8cGjV05tnuc27jS cdfHW4+fOv7cBIMJuROOTFSfyJ24P42QlpS2I+0LN4pbw+1P56RXp/fx2LxVvBd8f/4Kfo/AR1Ah eJrhk1GR8SzTJ3N5Zk+WX1ZlVq+QLVwrfJUdmr0h+31OVM62nIHcpNzdeeS8tLxmkZYoR9Q2yXjS 1EmdYntxqbhrstfklZP7JOGSrflI/vj8pgJt+CPfLrWR/iJ9UOhbWFX4YUrilP1TNaeKprZPs5u2 cNrTouCi36bj03nTW2eYzpg748FM1sxNs5BZ6bNaZ5vPLpndPSdkzva51Lk5c38vdiquKH47L2le S4lRyZySR7+E/FJXqlYqKb0x33v+hgX4AuGCjoUuC9cs/FbGLztf7lReWf5lEW/R+V9H/br614HF GYs7lrgvWb+UuFS09Poyv2XbKzQriioeLR+zvGEFY0XZircrJ648V+lauWEVdZV0VdfqiNVNayzW LF3zZW3W2mtVAVW7qw2rF1a/X8dfd3m9//r6DUYbyjd82ijceHNTyKaGGquays3EzYWbn2xJ3HLm N+ZvtVsNtpZv/bpNtK1re+z2tlqP2todhjuW1KF10rqeneN2XtoVuKup3qF+027d3eV7wB7pnud7 0/Ze3xe+r3U/c3/9AcsD1QfpB8sakIZpDX2NWY1dTSlNnc1hza0t3i0HDzke2nbY9HDVEZ0jS45S j5YcHThWdKz/uPh474nME49aJ7beOZl88mpbTFvHqfBTZ08Hnz55hnXm2Fmfs4fPeZ1rPs8833jB /UJDu1v7wd/dfj/Y4d7RcNHjYtMlz0stnaM7j172u3ziSuCV01c5Vy9ci7zWeT3h+s0b42503eTf fHYr99ar24W3P9+Zc5dwt+yexr3K+4b3a/6w/WN3l3vXkQeBD9ofxj2884j36MXj/Mdfukue0J5U PjV5WvvM+dnhnuCeS8/HPu9+IX7xubf0T80/q1/avDzwl/9f7X3Jfd2vJK8GXi96o/9m21vXt639 0f333+W9+/y+7IP+h+0fmR/PfEr69PTzlC+kL6u/2n5t+Rb+7e5A3sCAmCvhyn8FMFjRjAwAXm8D gJYCAB2ez6hjFec/eUEUZ1Y5Av8JK86I8uIOQD38f4/phX83NwDYswUev6C++jgAomkAxHsC1MVl qA6e1eTnSlkhwnPAxuiv6Xnp4N8UxZnzh7h/boFM1RX83P4Ll9R8f5lX2PUAAAA4ZVhJZk1NACoA AAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAABYCgAwAEAAAAAQAAApwAAAAAZ2ScIgAA QABJREFUeAHsnQfcFcX1v2NHBTViDCjYATtIjBUrVsQWFSWJDVESQ6JGY0SxRBFTVLDEXlBjpJgY BbEFbATQRIryVwFbAgoq2AC74f/wHj2Z3+7evXvb+9573++Vz+vc2TNnzjwzu3fm7JTlli5d+i19 REAEREAEREAEREAEREAEREAEREAERKCSBJavpHLpFgEREAEREAEREAEREAEREAEREAEREIFlBOSA UDsQAREQAREQAREQAREQAREQAREQARGoOAE5ICqOWBmIgAiIgAiIgAiIgAiIgAiIgAiIgAjIAaE2 IAIiIAIiIAIiIAIiIAIiIAIiIAIiUHECckBUHLEyEAEREAEREAEREAEREAEREAEREAERWFEIRKAs BObOnXvWWWe++OKLH330UVkUSkkTEthvv/0uuODCdu3aNYkNgwYNIt+BAwc2Se7KVAREQAREQARE QAREQAREoEIENAOiQmCbl1q8Dz16HDh58mR5H+qj4h999FEqlGqtj+KoFCIgAiIgAiIgAiIgAiIg AtVAQDMgqqEWat6Giy++GNdDzx4HnPGL/q1ataz58jTvAsybN//m24aNGfswU1qGDx/RvGGo9CIg AiIgAiIgAiIgAiIgAmUjoBkQZUPZnBU9+ugjFL9vnxPkfaiDZtC2bZszTutPQVhQUwfFURFEQARE QAREQAREQAREQASqhIAcEFVSEfVgxnpt29RDMVSGb32rVctl01i0oEZtQQREQAREQAREQAREQARE oIwE5IAoI0ypEgEREAEREAEREAEREAEREAEREAERSCYgB0QyF8WKgAiIgAiIgAiIgAiIgAiIgAiI gAiUkYAcEGWEKVUiIAIiIAIiIAIiIAIiIAIiIAIiIALJBOSASOaiWBEQAREQAREQAREQAREQAREQ AREQgTISkAOijDClSgREQAREQAREQAREQAREQAREQAREIJmAHBDJXBQrAiIgAiIgAiIgAiIgAiIg AiIgAiJQRgJyQJQRplSJgAiIgAiIgAiIgAiIgAiIgAiIgAgkE5ADIpmLYkVABERABERABERABERA BERABERABMpIQA6IMsKUqqYnMGbswzvsuif/pkyd1mjWLFq0eN68+Y2WnTISAREQAREQAREQAREQ AREQgVoksGItGi2bRaCqCBx7Yt+35s3/3nZdrr92aFUZJmNEQAREQAREQAREQAREQAREoHoIyAFR PXUhS2qVAN4HTJ81+5WwAMyJeK5hFsYeu3dr1bJleElhERABERABERABERABERABEWiGBOSAaIaV riKXmcAF553z1NMTum7XJdSL9+HiS39LzA1th0YuhWIKi4AIiIAIiIAIiIAIiIAIiEAzISAHRDOp aBWzggR69jiAfxXMQKpFQAREQAREQAREQAREQAREoPYJaBPK2q9DlaBwAmwbmT1RQcLZ1bpkpfV7 RgqIgAiIgAiIgAiIgAiIgAiIQBMS0AyIJoSvrBuVAOP84SPvffChh23LBvJm28iDck9e4ByNm28d NuuVV8xBgPAZp/Vf7lvfuvKqa0l7/nnnrNe2jRWApRbs+NChw2a/PK0/MT/tfzp/35r/9bkYyNse EOEWlYUaYxnprwiIgAiIgAiIgAiIgAiIgAjULgE5IGq37mR5AQRwEPz056e768FSsk0D/2bPfgXP QkQXx3naDg4ej+SPT+i75+7dCHikBXBVhJojApHNKUlSqDGR7PS1ORNY2PCBwGqrrdauXbvmjEJl FwEREAEREAEREAERqDkCckDUXJXJ4IIJMN3AvA+tWrU8pteRxxx1JAH8DveMvBdHA3/RGPogcBCY 98Hkex64bH8HpkIMueraJ56akDf7++8djsyTT0+wuRJ/+O2gjpttFqa6ePBvcVhEjPnNpb/FVYEx bdu0OeboI0N5hauKwOTJk++8805MuuSSS1q3bt1ots2aNevBBx+cPXu250juHTp0OO644zym0oEh Q4ZgAPlS9vS8Tj31VAR22mmnxjQP58yqq66KaybdNl1tHALWWjp27Hj66csmhdXKx5ruQQ2fFJt5 CPAoyHIvpCipxUsZ+SQW7eOPP/7kk08a87GZaEZKZCmlS1HbfC7xI8WH8jby76Pdj+R73XXXZaGd +HSq/vaZpWiSEYGaICAHRE1Uk4wsicDwUffaDIUzftHfd4tkxQSnV6DXfBC7796NRRaWzc23DbPA 9dcM7djha99B27ZtOMzi2BP6hpMdTCzyF0liWn5z9CbrLyzGxBYtXvzclGVzKPCDnNznBIvEGBZo HHbEMVwd89DDckAYlkr/ff7550eNGpU9F8ZRTdV1xvswdOjQiKmMt5vKnogl1fDVHEM4IM4991xh qYYakQ0iECFw2WWX8dTadtttf/KTn0Qu6asINC0BWibtEx/EkUceuffeezetMcpdBOqegBwQdV/F KuC3Hhz7MBT23K2bex8cChMfnnxqAsN+/roDApeEybv3weRxJfTtc0JkaYaryhhY/M3+l6FXgrQo P3/gObNnvWIbRmTUJrFSCNDVoM9RioZGS3vXXXeRF+/2TznlFFZeEMD4cDZEo1lStRnho8E23q++ +eaboQMCxwTxa6+9Nq/iq9Z4GSYCdU+Ae9Oet++9917TFhYz7OGJK0QTppq2Lqond9onv6rYw5sJ OSCqp15kSb0SkAOiXmtW5fqagG/QwByHOBRG+x07bsaUBFZM2BaSyJtYonxcQ6ExLVvxX0tcHsyz wMER+jhwkfCvUIWSL5oA6xfik8MZ6tM95RJTsCOaw2Ft5FJFv86dO9c67j169PBRNP3mzp07VzTf 2lJOfdGDxDvDoCK03NbL7LTTTo4uvKqwCIhA4xBgdhLvlhn577XXXo2TY65ceJzaY4Hnvx4LuSg1 t3h+O/A70DZopc2t7CqvCDQ+ATkgGp+5cmxUAh8t/vrETT+0IpJ91y5dcECw74PF55WPJC/0K96H viedwHYS5MiulsyDYObFHrt1YxVGLgsLzULyGQngUMjlUyC+ejqm9lqGQmnXyZSapcr69euXIqBL IiACTUuAAR6fprVBuYtALgJyPeQio3gRKDuB5cuuUQpFoKoI+JKHNm2Wbc2Q8rHNHVzeN3FISVLc pd69jmSjyu91XbblBG4IVnz8asDAw448hsUdeTeYKC5Hpao0AfcR5M0ou2ReVdkFsmeaXTJ77rkk C8qrIOFcOabEl66/IA0pwimXUuyPXCpISYpwyqVIjva1UPlEJbkiC1KeXTi7ZC7DPL6MqlxnPFBE LgUlKUg4bl7pMdkNyC5ZtFUFZVGQcNEmFZewUNtS5FMuJdpWkHx24eySZlWh8ollITK7nuySufJS vAjUKwHNgKjXmlW5CibQmBMQmPjADpd4Hzizk0Uftk4ETwRbUbAbZbguo+BiKEEjErCTKdh0wPoZ TJoIV0mEhiDweMPHJHldb6s8ck3BsLSkmD59undi7r33XluxzIsaZkOwNIMYJO1rmISrRLL9waRJ k2y1MwlZm8A6hcQcQ0n0kJw1C3wqsUA6Ai09rzg35m/zEpUZ1KwkNyOt4BSBD+Fjjz2WMho6u8Rf INgunqQN12jEjcGeXJRcmwfMPOqIurBIkpMFhrmMBTz3Fi1asEu8VUq4Ubypogi23CZjCwmV0/ao L/ZVDRtkiMiEydq2qQcUlo8dO5asMZvNO91mijN+/HjWQnOJyLzGIAzwiOWuzQNh1pF2mNiYLSFq 0f/MM8+YMektOV6hidWBZrQ13JGPm9pcFefG5wqYnpSKW9Yug5YZ0XPDDTd8+umn7FGS97yYSNFy VYq1fIpDeyBM1l4vLNqyRhLa4LcST6SQc0YgZj/LK+Lzj8jXNq/xRmh5hQvcvN5pjSyhirRebvbE hWaGwm4iysKD15Lb8zC+sM7La7eh1TiR/kSNJ4k0D2hTivi6PNMM5PBJC7rwmey5xwNxIC5jKEyV Rfrtw05AcOMuDu/0XKzytk9T7g+o9ddfH81+74fNgAqFGGYYQC7BhPvLbY4EaE48Yaya0m/biJHp wmHtu2Qk6/BrpHbsdzAUsDDN78YbbyTszZUwafkQoIWE+RJjrS7yHCOeD0nC9mA5UmXcj4l3iqXS XxFoVgTkgGhW1d0cC9u24UwKSj77lVcSXQycr8lV3/rRB/8ciunhCoHDtp5tD7CtMfE+sC6DvSH4 iw+iQjlKbRkJ2KArVEgHhU98XTE9D7p31mkzeXpyfOiZIZzYgzGxOXPmoNCzQI+FTRV/7Wqo2ZKg nEjrOXkSvpLjgAED6LS5TiTpdblmi+crHU16SxFhT1V0ALVwC5N7XnEU2AY3/ro8YTRQEDqLhBnJ hJdCVhF0CPNBmM6lJ6Gfzce/EsAYPnnrxZKgMGKeaWBQQRnD8TzxZtvSpUutO24a/G9c1TJzG1oI 4zo6+i6ZGDDldG3p7ocCxPNBTzhw4iuRiFF2byHw9IQYD2T/SmCZKQsXopxh1c477xxeIkx5XY8L U0zsiUiixLKOxPM1sTETTz/+L3/5S9jCrWFjDCP2yOi0oT6jFWrVQeuKNPtI3VHvJhm3LT0GPaR1 mQZU/+fWxrlgpYZSWBEkISEjPQJ5vQ/xollGcDjjjDPCFuJPAC4hExpGzRIZudGoKcSoLCo95GxA sDzdtvbt29tNhGRk2RoPECs43gEzw/ICiFvl9Q4c0+OXSMuH9p+3lhE7//zzESPgyRMDEYGw4kJ5 gNiBHR5JDOZxm3ALeCQB7Of5Gd7UVqLBgwcjmTI4NyVxIK4c20K1xGOD2Q/YRFbUbKQKSBJp58Tw QXPkwWKaaQZcijcDktDGcCdFLtFmsDOxhXCJxubFISFVHM/XyhUx0oRJnvceN0k05/oZjTyd3Iz4 04lLBiHxZwXgcebUcuTuozgRSS8LatGfy04HpYAINBMCckA0k4puvsXEiWCbPrLRA1stxEHMnr3M AeFHYOAUMHkcEHHh0mOeeHqCHXUROWsTNwQ5Dh95L3MicEO4Q6T0HKWhQgToBdIno5dJl4KOKb0l 66DwSjnsBdJ1o3dFLwQxOuI2VGDUQf+MS3ReIyPV0FqUM2Kh00YvinjOruP1FIF45ylMRRjNfBhs 8zHzGHvQSyMSs8NREDZbL5xI3qExSEPGBgNx4UguhX4lL8wgFUMF8oISWcANYgSgFPF3UGrikbeX e2FB8mZt6BBjZMJf3kEdddRRBBydlZEYlDNOQDl5ecHpatOb52rKxzrNECMv9Bs6yogSkBIIOZse qhKxHXfckWEbMWaMlZ2/kRaCBiJpIREsuUyCpGngLzLkZRr4S983bJOmATuRtBbiOlFCy+RrojFg wfJwuIty9CAf3gv0s61OXW1xAYpvr9DdGOh5HdE8wiNXLZ6MwtZlkVRHpNnb3YdwEU0rLAsWmhIb avIc8BvNmxDksR9J2EaahKFDQzjmCfVb2IvmbZV4IikFDxZaCFNpIqnMMLKjfrnEV2qKJkHADQuT WOOhJZsl3njIhZpNGUi75SSJtDEbzpGc4od5JYYxL9KErB3yN3RAWEHQQEugdNx3hM1aipCoOYw0 UMhHnqihDGFKbfqdHtDImsolx7CYxKONJBhD7ZCKxoZy/mI5JQqFI7kU/TWFVfhrgsH2jPLbhxz5 6SE5lxIfLDDEZmZYWJUZWGNO0UjOU9SYE2lMYAWleDFRZXciqvz3MTFff5DCkGcjGdFyTDkkqTLL mtyJx3gC6EQ40laJj3wQxjwiw6ZlVYMlEeH0r6giOzINi0O5qOXwl4Ls3EJ+7k2YHIk0V2N6Lroq As2HgPaAaD513UxLykh+j4bzLziMM77DAkdRWKSfeYE852IAK1HeTvQsBeWUKdPI9Mqrr40b404H D5SSkdJWmgB9GnvjRCeDMF0T663SSQo7N/Q8zPtgwvSl+CBJJw8L6ZpYNz3RWiRR7i8Mmb3PVz7E J8qHkdjD6yP6hchjHmHrrlmHzCSx077acN3UIu99O/MXhGqLDpOX9cwoOy/frMNKXoxtDAUCjBJd P1isZ0+3nl5vWBDMc7FcAUOHfhPwr46OV+tcQgDlJsZfNJtycqdqcikn3msZdJTI0TnnxOEQYngT yJEkngos1mAiLcTeG3sdpRhjl7Af5QaKMPrhbJdwB8STmzzlbbDl64khNupzVRjMBwFsI4ASEzBt XqfIh/eC12k804JibJToys0AN8ZG+6aQsLUuxjxh66J0NnimJXMbmjB1Z7UTb1opI+1clpOFNSHs tBvNlJALH0uFzQTiN7sJWJXl0k+8FQ0xb6tEohP7CVALnlGoxG5qrOJDWl7V2hNgmVnfGObyyFCD 6GwQX9Z4vMYtd5eMBNAcf7Agg1V2B2VEagYYCjCSyu5E9PDxTK1J8JWmTvFDawm7WK6AycefqHF5 9GOAyWOVT+IIHws8PK0hhc9PjAe1tdXE+y6eV6ExWBW53YwVtoWs7MGCJSZMgA81m/JgCTUTdmEs 5PYJmcMEtWZ54rOO2rE7ET0wwUIzEgvD3yAzEj1oIwkWEjblhLmvwx8Fa4rEI5zYVs0e/2sZhYXC EhLaL46LZQnwYKFavX1SFr+bwuRmYTxHDLaihcIKi0BzJiAHRHOu/eZS9pP7nMCQnmkFP/356X7K JoVnusHNtw4jwPQHWwdhRPr2OYGAyfs8iEWLFp89YCDTE0wm719fvvHkUxNCYc8IY0IfBIYNH7Xs xaPPxQhTKVyFBBhqRroUXbp0MTu9F+idLfordErCUlhXhpiwNxYKlBLm1br19kIl9tbdbeOS9eSs MxdKEra3jvT/QvmITEFfrWdGkrhhoLDOXDhKdCzxAUxcQ0GWhMI+IcIj6Z6in0/8kssQsC5mIjrj HA5UPCHv9yLNAMJWUutPuyQBx5Lx1RkaIg3SetuoYsDpw2/PgnFIRJ6MrLopfuQSZttwt2H0+vW4 2jxEKIyrwnhy97yKCGCJv1uOQOOrvYZ1MgyB3PJIXmY2nF04pWkxkowkT/+aeKNBz1L5wIyqsRgn xlcMtkbiV3PlBV5amo0bQxlPyH4oYTxhEKXcOKEZlpAbMA7Z0cUdFmF21DVfKU4o5lnYrR3KJ4bj TcjuI4TZ6cCSUImmloLHrXUaifoLiozrp4x2R4T3tTsxI6hpFYaO5TDx+64gSxKFU1jZXUAqf7Bw p0RYpTxYKHjkxrfKRSGBiB6+WoxnGlobX6sFJVPudyLy/vSLPC7QvNlmy14F+d1KLlb78RIhbA+E 0ICUpxlliWQXJkwMx58M9hOJsBef9m9hngBGxlUlWuhXFRCBZkhADohmWOnNrsht2fHx2qH4INj0 8Sf9Tz/0yGM4/7L7AT2vvOpaWHD1/PPOCaHgAjj5pBOIsZMykeSICv4+8dSExF0kwrQetqUffL1n 5L2k5Z9dIv6M0/oTRjlqscSMwTB8HK1atYwY4woVqDYC8QEqMxQiRnovPLG7Y11zl4mkLeVrpBNp quIGE0NXjE9cPh5Tij2ktY47eUV6ZqbWeqt0mr1/ny5fojEkdzdBZJYH5tF9jPcgIzki1kBu2dAr 8olzdoE4VYYodpWuv4t5wIx0GY/PHnCn2CsNm92kJ/QBZKIxPsqK1BE6QRHXnMIhLhyP8WFn4r1D BTEm9yke06Ytcw1TKXFhIg27Yyxj04pXKGZQcDIl4CMTvtrN7qMprvqNn3eIbi3NdJKw6I/ffY4i XZU3A6/xRHlvGF4ixGxw7jkmJkyP9Mepj+HdbDcsXUPRVxNRR9pz6A2JZ2R3LjJx31BcuPQYZ+Wq vC4SWRX0YDEaPm3Es/AAu6h62AMRXMQTY24Cr0fald0j/pjy5ATsqYKANQB/ICSWKExoYX+axX0T CMTNi2sIY+JNIn7v+20SfwqFqhQWARGAwIqiIALNgQDD/j8Nu4W1D+z1yMh/XkOZGe0f0+vIY446 kkAEApMm2rZpc0vDAg38AuYaIJKzOTksMyKc6yteDyZNMM2B5KEMx3Di4xhy9bVsS+EzLLCh42ab 4X3I7uMIdSpcnQS8RxJOXHdT7ap3rz2+kQMYwBEDM2fOpIfnQ6ay22CFtT0s4sp9DOb9dQuk9Hrj SgqK4RWlvTanapgpzdu2Tp06YUZBfUdDx+gXa4tD5y0EG/hEimA6GcZE4rN/deBZmpkNDHIRoMtO LxyT3OZ0+exGJkr6KCXRHizh4wmttVBG1pN7pAes7I4xvSl6qlICYAeUD5lQxftSxoREMi6ykVWh Q3QS4r9ACQXJUpuJ9nNDRQxLFLNIJ0ySFDEaBjcOhmEejiEkkbcBcMaxYory8JI/HOJjv1CsccLO hMeIFTbM1yvIA+HVRgj77VOhB0txRbAW5XeiV+iYMWMijmD0O2HkqXEvUeIDIW7PggULiCTHRmst XpyMFsZtVowINB8CckA0n7puFiVlgYOvcYgUuG3bNhecd84Zv+jPcRhcYkJEhw7LJvjl+pgqW7Lh wqzaMPnQZ/G3e4cnKsHrwSXTgDsjlOESx3DimHBj2rRpE+oMhRWuXQLe+/S3MfGyeG8sfqkRYujk 2R5glhfdNYYTfLDKx5llNCNvX9A7nYbOh0BltMFLyit0FoYwU5e8+MuHS+TIICrLwAk+oDM7KRcJ zV1CN9RLkddsr/2UFpJXSRaB7CblrSNv1ZZvXvks5pUoYxj5mx1jRc2OK2eOj3khGazigKA6sg/R Ac6WgT7KtZbGTQo0j8wIkLSFJkGzt9JcuUTcK56FOxZzJSwu3speXNpypfK7IP056YPScuVbqJ7s d0ShmkuRp/3TFDMyjGQUv7kiAvY1b6NNTFVKpBWnGhpnKaVQWhFoHAJyQDQOZ+VSLQQY5Hfd7uuF +ik22ZQHBCLCtgcEvgxcEinJw0sRDeGljMaESRSuUQJsGFGdlpv3gb4g64p5b+N9O15m+n5vZbTc e5y5dEZ6b3nlc+nJEk+prV7oozNksr/0jCk4f+1dbi49CJj3wdDZO20TxqnBJ1fCXPGsMXb4uWRK iY+ATVFVKPNC5VOyLvESw934ynPXGZlNU1Gz48rhH04T8CF64vxwt9kCeC5MnjbJzB1vJzRCO+Ql Ip/ylSRczd4YTFVeebDzpp1SYyf3gq2IIcDdkWJMfVzCWRne/pFCVcgFE8kl5Wt1/vREGkb60y/S /GhmfgukFDySKkWyXJfMqsZ3fJTLfukRgcYkIAdEY9JWXrVBgDUa7BB50IEH2E4QbjRzGZ5s2FFS +0Q6EwXSCXg3i2FGlj5TurayX8XLYAMS1tJXetYoKMjLsosXxOPdjHT5uIZSYhg/8GF0hxm8auaV Jh4ERg5E5lLL3uw2yGQahddyLuGUeE9LXl72FPlCLznYddZZJ29ajGEA6Uki8nSs7ZLbnC4fSV7o Vx8/kKnnmEuJCWNhlqkraEMnn1zaSo+3QUjE7O7duxteXF02RM/yWMBO7lNMon3yKdE2Myzjs8gR 5ZWHP2XBTj4YaRuOZKmLgorjZmBYhG1Besoi7AZw25a9pKVb6LcPzzE3tXS1JWqwZRRum1coT6e8 njgvBW3YE6bYY088e0qniJXxkrs4M7pIypi1VIlAzRHQJpQ1V2UyuOIEmObAxg1sGPHT/qezZ4T5 Hdixkn0iybtt2zZ2TEbF7VAGtU/AX3/RL6/C0vjk4UoMfSPlNRQMwBJ7hM7HLUmXjygv9CtmMM3B ZjqEaenj+gtDhxMKeNh60sjz8cgiAl5ePzGhCCUpSRysbwaRImzG0L9PnLbtFrJZhilJl0/JKMsl 9/5QWXF5jKH6fGsVE6bKEltXJHlFmxZ5MTw2myPMydcGTly1IXri3nsRa90LYGaHV82bEMakh1Fl rTpiWK5UTj6edTyJDcLJYtSoUVYLeYeUcSXpMW6GG5YuX9Gr3PhWm7Z0q5S8KrFMw28ffwKUYmG5 0tquKLYFJjq9QtmBKG8WhT4qK/p0SrTWLSy9SSTqV6QI1BMBOSDqqTZVlvIQYPcH5j6wyAJPBFtO 4nf41YCBtvsD3gf2btA+keUB3Qy00Au0Tqq/MA8LTWc9vvNWKNBo4chgm/FDEYsI0q218QlDpsSt Fq2XjIy/2nL58Bx4y6IgaK4wNI9XcORonzA+e9j8DoDiE6aiTlEbxqSH6bNaL5xCkTYiHA7nIpfi X+OjMpJb5DI3SQZHCRPpDVe8jsjOmgR6fGDp6x3iNeJZh3Z6B919GX41Dg1hk48rJxWuB5LYPnN8 dZPwSrhOD7DdY6ikXE0L/RTT9pL0vAh4WfygPrtKq7OsIUmz8a9h2njYG3DkJkUyjtGTox/b/KsF /KaOGMbVuHIivcZ9NBtRGH71Z50Vnxpxy0OxUsIQ85slct+h1rFnzyLx+Ibsye2sTbx1iQ47HDHx KogoN08Q3sxIcUhYoleCe8dZxc0gxhphxJ4yfo0/t6kgs8TuAvLyCvVLoQEwCX3EDc+DZSf7xn9M kYw//WjkuZ5mmBGXD7MuLuy3QPi0MVUVyrE4O5VKBKqBgBwQ1VALsqHqCHDgBadmsGnlnrt3Y8NI /uGV+OVp/f90+y3yPlRdbVW3QXZ+OP2Pyy67zLpfZi99VjYRYBxFP7WpShAO29w2DIuYWhbz6JzZ sIfOmQ+E0GwcCNBZDGeYI2/jT4S9P0dHk7C/985iGH1cxBhfeQH5GvbOw3GLdXlNbXyQFmZntuFP 8S4yaa0sYUZhklxhKzWqaA9ocDHTRm/7pptu8siUAPKQ8dwJsJzEvoZgUzTAqkePHgig6oYbbghV DRkyJK4KeTuCkTd+VJPLm+XxjHBe2JCAQrkw3MybEJc3s6m70BjkvVxHHXWUpaK1uCVeI1xCGMPu uusussAqFy5L0zJtaI60T2veFBarTMb/+h1HTHoD8yQODbX+ZhUmQLCMXDIMWHNKhEzZ44alQPbh Yqg/MeyeHa5mmdyRqCQ90m+W8BlFMb19pie3qyC1gDeJLKniMjQ5U0VdhI8R7CGGRk7Di6cKY6wi Im5Zu3287kL5gsLOigcL9etpTT+NJ9Fb52IlBuw5zw1oenCWcacQhphPfOArtzDPBGuuIUMzkpiQ oZUIMpTI+VC08KubzdPJPURk7fKm2cXKG7DnZ+RuSqlQ2sngwYP9AVJeY6RNBKqZgPaAqObakW1N SaBt2zY92+Y8U6MpLVPeNUWATjldH3p7/GXHOBv58HbLemZ8tU5Vk5SJ7i/m0cmjwxTZzQ7DrM/K pFnvr5doJKsbGCegFhr0zlkxS7/T+oX0QdkFM5IRO1NYz5LuI+/k6VAiDzfEvDeZ1yQKSHZWQBJC mxhSYYwppxeO/tAYriIWMSaSEWMP48aY0IeFJuPmYWS6EpOnFsjOWggmgQL4pOWDABogE8k98SuS dGT5kNzBIkkv3IqcmCoSSblIizFWrogqp+epiKF7bXVKKmywOrJSWBNyYXNw2GCA9oYMMVZMwj5W cXmG6EYmlzEhXreEeuGD5ejxG42r4ag7pWmZ/W5DesD4UCI+XnaSUBw2B4mnxQYvacYhukPDMBwx oU5yN8K8Qo9Usd0sBpm27RwwkrKHSiyMVYmQyQJ0cfnEGNwrND8ukXvEnkT5IiLDmyXShCiataW8 apE0YaylqSA/YMAAYvImjAhQTGAyhiRfe4yAizAfJEFq3udIqvArc4jMGbfsvh0/Hhu8+Xk7CeUL CoesGOWiMHzKkZf77wpSm1EYFDwQwmeCJYRJiBqxI444Ai8D0OIMkQyffv5A8Oc5Oo02eiJPGy7x NMPxQXwcb6J8xqKliJEj2dGo7G5Kr1CenDaJiTZAwhS1uiQC9UdAMyDqr05VIhEQgeoiQA+e4S49 Hsyid8KHsRbdQeIZpRBoQnMxDDNCGwjTRyTerLLNDspiIf31c889l+zolkEADtZ35IUYHOIvhBEj 3l6XIY8wf004uz107Py1s2VnaU05wyTKGzcGI/NmccYZZ0RGWWab95hTZshHlJPdJZdc4iWlY4qp GEZ89qERxlBrlMvBmoZChxlkanow0lVZ0eJYqNOQQ1hH1uAjJaU6UIKRxFudmpGJw3VkshtjrSu0 3G40zCAyYnlK00JPxOaUrxiP5dYMrOwIwyql1uytLAZ4s0zRb5eA5uWyGIdGgBhbWh/qIR4bsMTa Nn+5apVo8ENhwhhjWXiNowFTc9VLJLl9ZcRryuP3cqJ8cZFUpQ9ivQkRE7kZ05XjODBT0cAnXTjl Kq3LGwB67M5F3tpA4i0QaqOxkdxbgjUh0+mRoXyhYVjxyMUYEmKeVa41npQmWmgucXnY+mMhvC8o bLxt4IXh6WfV5wyt+cWNpER8rO7QzAdJaj9xAG9PJ7+EMPrtLshbNfFCZYwJnzaWI9bS3uIVyl4Y VpD4pYx5SUwEapfAckuXLq1d62V5lRDYaKMNseTZfzxRJfbIjNIJ7LDrnih5441/l66qUA2DBg0i ycCBAwtNWP3y1gXETvpMlesAFceBrnNjGmaDQzjwUo6/6TYv62Y2vFQEGsK8JDzzzDNJYp3R9LR2 NT07u4ok3UHrEWbRaTJep0Wkjefi2jKSMQ2nnnoqAaeRXth4prliCsLilmfk4O0tSwPAQm8DWfRn t9zVWtPKhSJvfPbi85qXF6TmLcqrNiKQpWZNP5QY1JE8r2HMIwCC25Mli4hV4VfTxjgTZ0QYX4mw NyF7ltr7djK67rrrMmZnGrK0qCwK3Z6MTTrU6e2wXMaEygl7M+DB0pg/PZ5vlnK5cJann9POUhzX nMWMCLrivsZzZPoS0yKwFpdQqJOqx6owRmERaA4EtASjOdSyyigCIlAVBOhXNUK/vLiiNrJhWXqN FIRuHNAivUafWeC7qectcnp26VfTlZe3TsuirZTihIUtSE+hlhfa3iJtILQzHs5ueUFq4xl5TMbi M9iwOf8Fva73XLKXy5NkNMzli8jC01I0G00VWrmuoaBAJBcbkRZkf0RDQbnHhUvRVq52GLfKYgpt Brn0FBpfUL4FCRdEuyDNhZYxUT6eo01TwjkVkafqIzH6KgLNgYCWYDSHWlYZRUAERKD2CPBKM767 GC4J4ikM/TbNXK29Sm3eFpv3gaZb0PCpVpjZjWkT/itkMw4OJlmwpD+inxg71yA+wz8iqa8iUDkC TCCiffI3kgW3Bk2XyIw7v0SS66sI1B8BzYCovzpViURABESg5gmwzoKtuXA34IPA0WDjCl4iMdKw nhwrDmq+kCpA8yDAgIRGywjZRs511nSZesAmlxxH2gg3JrOfyIUtP8mUsRzvk3lQEOmeneKmljSP ZqhSVpyATQJiy0/aIb9ZbEJht4Z5x5ieo/ZZ8TpQBjVCQA6IGqmo6jZzjTXW+OijjxYtXtyqZcvq tlTWZSIwb978THISEoGKEaDrxg5kNgMCTwSfMKtC95wL0yosAo1MwA5KsEwZltTTIAR3ADep88S3 UtEp5WwoiMeB98l2yoDnS4B82XuiormH2SksAnEC/DARiZ8RTwSfUICZQYkH0IQyCotA8yEgB0Tz qesKlnTLLbfkUTvkqmv79jlhvbZtKpiTVFeewKJFi2++bRj57LfffpXPTTmIQE4CjCXYSI/Xm3wY 5/AqiTdI9hJJw4yQmg1oIRNGKlw9BHhRTwOm0VJTlZ7+YIs7WIKesfhML2JIX8qSEMpF6Rhf4R1o hBUQAAQjr5SZc4HlFJOWT76NkHVGpBJrzgTwQXB8DF1iJul4+6TFlnKLNWeeKnu9EtApGPVas41a LuaX9uhxIJMgGjVXZVZJAsxqGTv2oSYZ0tTxKRiVrDHpFgEREAEREAEREAEREIFqJ6BNKKu9hmrC PoapDFb1wrwmKiuvkbge8NY3lfchr3kSEAEREAEREAEREAEREAERqFECWoJRoxVXdWbjg7jpppur ziwZJAIiIAIiIAIiIAIiIAIiIAIiUB0ENAOiOupBVoiACIiACIiACIiACIiACIiACIhAXROQA6Ku q1eFEwEREAEREAEREAEREAEREAEREIHqICAHRHXUg6wQAREQAREQAREQAREQAREQAREQgbomIAdE XVevCicCIiACIiACIiACIiACIiACIiAC1UFADojqqAdZIQIiIAIiIAIiIAIiIAIiIAIiIAJ1TUAO iLquXhWuwgQmTZo4a9bMCmci9SIgAiIgAiIgAiIgAiIgAiJQDwTkgKiHWlQZmorA6NGjhw27valy V74iIAIiIAIiIAIiIAIiIAIiUEME5ICoocqSqdVFYNy4cQsXLli4cOHo0Q9Ul2WyRgREQAREQARE QAREQAREQASqj4AcENVXJ7KoFgjgdxg37u9m6fjx4z7++ONasFo2ioAIiIAIiIAIiIAIiIAIiECT EZADosnQK+OaJsCsB6Y/WBHwPowZM7qmiyPjRUAEREAEREAEREAEREAERKDSBOSAqDRh6a9DAkx/ YPvJsGDMhtBulCEQhUVABERABERABERABERABEQgQkAOiAgQfRWB/AQSN55kQ8r8KSUhAiIgAiIg AiIgAiIgAiIgAs2VgBwQzbXmVe5iCeQ6epMZENOmTS1Wq9KJgAiIgAiIgAiIgAiIgAiIQJ0TkAOi zitYxSs7gZSZDiNHjtBulGUHLoUiIAIiIAIiIAIiIAIiIAL1QUAOiPqoR5WikQjgffC9J+NZhkdj xK8qRgREQAREQAREQAREQAREQASaM4EVm3PhVXYRKJTAwQ0fT9Wv38mEb7zxZo9RQAREQAREQARE QAREQAREQAREIJGAZkAkYlGkCIiACIiACIiACIiACIiACIiACIhAOQnIAVFOmtIlAiIgArkIfPLJ JyNHjpw0aVIugZR4VvfcfPPNs2bNSpHRJREQAREQAREQAREQARGocgJyQFR5Bck8ERCBeiDw2Wef XXbZZVddddXqq69eRHlWWWWVf/7zn2eeeeYbb7xRRHIlEQEREAEREAEREAEREIFqICAHRDXUgmwQ ARGoZwKcjXLppZc+8cQTgwYN2nbbbYsoasuWLQcPHowb4ic/+YnmQRQBUElEQAREQAREQAREQASq gYA2oayGWpANIiACTUbgvffeY2y/dOnSIixYbrnlVmj4rLHGGqeccsraa68dV4Lmu+66a+zYsSed dNJee+0VF8gYs8466wwcOLB///6//vWvb7311sS8MqqqObHPP//8Zz/72Zw5c1ZbbbUVV1wR5P/9 73+//PLLr776ir/MLjn++ON//OMfUy6+HnXUUZ9++umqq66K5PLLL08dmRiX+FBNhx12mBO4/PLL x48fj5h9EKa+EGvVqhWQyc4lFRABERABERABERABESidgBwQpTOUBhEQgRom8NBDDzE3ISwAo1D7 MBZloOuXiGRMy1fiGdPy1y+xsOKYY45JdApMmTIFB8Smm27aq1cvly8u0KVLl969e99+++1XXnnl b37zG8bhxempuVQfffTRokWLMPudd97BueD2t2jRAkfDSiut1L59e4t8//33qTKqZsGCBUw8cUlk cBLxt23bth6JJGpRyF+vTagi2bFjx5VXXtklFRABERABERABERABESgLATkgyoJRSkRABGqSAC/P mZuA6QxNd9xxxx49emy88casd+B9OJF4GRjwL1myhDCuhz/96U8MTbnEwJV38vPnz588efLdd9/9 xRdf8MK8TZs2cQRsHnnBBReghxf4rVu3jgtEYh555JHHH38cV0XXrl0jl+xr3759//73vz/88MPf //73Dz300ESZ+otk9sef//xnMM6dO5cJDlbAb3/721Yj1J05hoj/zne+87e//Y0pDC+//DJTTsx/ tMkmmzDTgUusYbGaNQ2EL7zwQqoS5pdccgkBqJ599tnf/e53cW2EkvWHVCUSAREQAREQAREQgSYh IAdEk2BXpiIgAlVBYPbs2a+88goz7U8//fTDDz+cOQ6hWbgPzPtA5GYNn/Bqu3bttt9+e97J48JY b731GLKGVy3817/+9e2332bfh27dusWvRmJmzJhx8cUX4xPh7f2NN96YOMGBIfSRRx45ZMiQO++8 kwUdOEQiSur1K+4APj7TgWLCB09BvLxUIi4JamfNNddkQgQC1C8V5E6KMAk6qbjtttsOsFTTFVdc oWUXIR+FRUAEREAEREAERKC8BLQJZXl5SpsIiEAtEZg4cSLv1dlB4Ac/+EHE+0AxXnvtNS/Mrrvu 6uEwYNs68I49jLQwb9RHjRpFeO+992agGxeIxLASBO8DkbyrT/Q+mHzPnj0ZM//73/9mHkREQ91/ xYnAmgsrJusyUsqLD8IPHGEtBnMiUoSZNMEhqaxqkfchhZIuiYAIiIAIiIAIiEDpBPL3iUvPQxpE QAREoAoJsOz//vvvZ3r/D3/4w0Tz/vWvf1k8vgkm5yfKsF6DeLZ4iF9lkgI7XLLygpUd8avxmP/3 //6fRe68887xqx7Di/3u3bvzdcSIEeE2By5Q3wFWXlgB8e/wyVVY5j747BUopUi+9dZbbKvxox/9 KHE+RS79ihcBERABERABERABESiCgBwQRUBTEhEQgXog8J///If1EQceeKC/VI+U6p///KfFMOhl b4jIVftq7+HjVxnxPvXUU8h07tw5cXPKiLYPPvgAe4jE2ZFrAwhPst9++yGGvFvol+o+EK46YdpC YnnZ+uGOO+6w9RcIpM+AwE+E64HNPhJVKVIEREAEREAEREAERKCMBOSAKCNMqRIBEaglApxPwfwF HBCJRi9evNinJHAmQq4tJNkWEf8FOw5ElLC7xMyZM4lMn87gqV5//XW2k+Ar6y/i2lzMAltvvTVi zOAYN25c5FLdf11rrbW8jLkmgEB+9OjRvuyFcy7YKNRThQGqiVkwJ554IhNhwniFRUAEREAEREAE REAEKkFADohKUJVOERCBGiDw4IMPMpLv0KFDoq24J9gewi7tsMMOiTJEvvHGG7w/Z1lERICDFSz5 brvtFrmU+PW5556zkyDZ7DJRIIwkOxPDRWIHPYRX6zscok50QACEJRU4FNgi1FAwGyU8vNP5sOMG p2NstNFGhx12mEcqIAIiIAIiIAIiIAIiUDkCOgWjcmylWQREoKoJsHHD/vvvH9970oyeNGmSW+9D WY/xAP4LJizEj8CYM2cOMsxTSHm1zu4DvjmiZ8d+lmwwaVaRNte2iFtuuSU7aLLHBEryzphwa+sg EC7BSHRAQBIynK85bdq0Z5991or84YcfxsuOGG6moUOH5moD8STFxZA7ebFkhrU822yzzRZbbGF6 qH12HuUclrZt23ISxwYbbFCcfqUSAREQAREQAREQgVohIAdErdSU7BQBESgzgQEDBuTSyIz9559/ 3q6yTIOX5LkkEzewJDlLM0iy+eab50rIyJNDN32ShY+lhw8fzuGdNiS2w0ETNXCuJPGLFi2aNWtW s3JAhDMg4gdhMNmBSQ3sGMrpJKxqcXRsseFhCzD94ZZbbtl3330zrpGJJM/4lZbwxz/+kbk2BFg8 wsGu1OwBBxzQv39/9h+59NJLX331VWbQsPqGBSPnnXce9mTULDEREAEREAEREAERqEUCckDUYq1V r810r4cNu33u3Dk+mqpeW8tnWb9+J5dPWZNp6tJlu169erVurZXwy6qAwSHTEKwy8D7kmoaQq7aY mGAOiBTXQKtWrexoT1Ze8G78xRdfRBuR3bp1M7UcJJnr6A0E/MgGHBAc85nLkvqLD2dAxB0QHKj5 7rvv/vrXv+bATmB68eMzIPDyzJ8/HxeAbxXhwuUKsBjk97///SOPPMI5rwcffDCeLJbMYBtZ4yjB w0UV33bbbW3atLn33nvxU1xzzTU77rhjWMByWSI9IiACIiACIiACIlAlBOSAqJKKqAcz8D4MGnRx s3I91EO1fVOGadOmzpo1c+DA8+WDAAnuA981IO+ZFN8g/N//582bZ2dApgwmv9fwsTQ33HCDOSCI u+SSS/6nKHeI1+krr7wy41h8JbmlCr7Ci/q7776bjS0KThlLwKv+Pn36tG/fPnalpIhwBkTErcCk Bg6/wK2z0047kUfogIi4KnA9IMksiZS5LSVZ2ZAYRwNzH84666wf/OAHpg2P0u677z6m4YM/4qqr rmIJz1/+8pfrr78eAaxipkZKmyndJGkQAREQAREQAREQgaYlIAdE0/Kvq9xHjBiO96HLFhvv361r i1VWqquy1XthPli05MlnZ0x76fVhw4adeeZZ9V7c/OULj7dM2YEylyKf8B8e2ZBLmHhf7rHHHnuk iIWXGIez8QQOCJwdYXyJYZaEcISEeUPyqrJ1Iv6XgH1ISIC/2FZ2B0SI1DmTFxNJGM9zdomvrAlH 8qEkwoz5KWnfvn0Jxz8Un6vMobDJEUxk8P1Bcfogj5uG4zMIIMMHASqCc1J8WgqXXnvttauvvvro o48+/PDD41kQQ11zRCuq7rvvPjQQQ52GNiemUqQIiIAIiIAIiIAI1DQBOSBquvqqy/jp06dh0B47 bC3vQ3VVTAZr1mq1Om4jHBAsn8kgXucijDanT59uhWRUmbKPQy4Q/r49vjllPAlzJWy3Aibkd+rU KS6QGLPKKqussMIKXHr//fcTBYqLxODLLrusuLSNk4ohOgW3vTOcM1njNxk7dmzv3r3dQ5FrrgTb LowaNapfv36sfYjbjCvh5z//Ob5UXAN2FWcKVQNw3BZrr702kWz8edppp4XkcUP86Ec/IqErxK2A qsgupzgabHdSxLp3785ffBz4aF5++WUCHMYR2uyqSg8wo4clHmeffTa7YJauTRpEQAREQAREQARE oGgCckAUjU4JkwkwlE2+oNjqJmBuI62goZZYTBRuAFHES2new1tt2wvz9JrH+2Dv5xkPZz8HAc3m gGDdQbr+Oru66qqr4g4wB0S4BGPEiBEwYR8TL29Yce6qwLt08803g/rQQw91yTCA8pEjR+J9GDJk yLhx47iER4ajK6Bt3gdiNtxwQxaqzJgxY9CgQauvvjp7hXIoSWRsTyvaZ599IoeqsjkI+32gAW1M f7AAUzaYZbP++uuz2MdmjhBf+ocis4yIHTHwyzz66KO4S/CPRIwsPRdpEAEREAEREAEREIGCCMgB URAuCYuACNQ/AXYK9JfbjAyL2KTQh7u8Ns/Li9Mi7WV7ly5dssyYMIW8cjfDfK+KvBnVhwADfnwE Vmp3QPzrX//CWcAbfvcRUNhwNoEvwWBxzZNPPnn++efn2lgUFwDTXpiqwDQHlBBmj894G1h33XXZ sAMlZ5xxRuImoIMHD44DZ3GHNS1cGG4ejpJcyzTiGrLHnHnmmRzwSQvkMFdvz9mTS1IEREAEREAE REAEKkFADohKUJVOERCBGiYwZcoUtz7lHAqXSQnY2v4UAS75fhNbbbVVumR4lTf5fIjBExHG130Y Hw0OCCsmp5ASYKUDe5dsvPHG++23X1j8xE0oOXVi66235iDMUDIeZmtPm6rArIS498Hk33zzTZbP dOzYMZ48V4w3rcjMiFzypcT/6le/IjnbUrz00kuc+lmKKqUVAREQAREQAREQgXIRaF4913JRkx4R EIF6JfDll18+++yzVjpetjO1voiS+kSGvOsjmPswdepUssCPsOmmm2bPi4Tm3QgXGmRPXruSNgPC 7LcX+4899hizSDjwMrLgBT8FMbgnEMZVAa7Ro0dDG29FLp+CY2FHCVuOtNtuu3lkJIDniIkMLJ2I xOf6yrKRZ555xq4WsbNpLrW54gvyjORSongREAEREAEREAERKC8BOSDKy1PaREAEapsA2/XxsTLw Ur24+QXsU2AabPSbQuSFF16wgS5+hCpxQLB5Qblm7HPIZXEAU4jhU/CFLSysgN6NN964884729Gb kYR4K6wK8CtRrbfeeushhxyyxRZbRMTiX5977jkmmOBIShFm3ceOO+6YfdcGtp+0pkWSbt26xTNV jAiIgAiIgAiIgAjUPQE5IOq+ilVAERCBAgiw/eQnn3xiCYo4/8IS+k4ETNFPz9vXX/C+OpzLwDaW nM3Je/JcA3gEbGjdsmXL9CwKuspMgVNPPZXFBQWlyiV87rnn9ujRI9fVouN99wRq6q9//Ss2H3/8 8YmTGvAEmTOFCSMsvsC3wlkVWfLlWArE2KuyXbt2ifL4PthhgXMrEq9aJF4PvBi+YOSNN96wpsWk CbaWCBMiNnHixA4dOrC1RBivsAiIgAiIgAiIgAjUGQE5IOqsQlUcERCBkgiwA6Wn33XXXT1cUMBH rb4bZa7ktv6Cq5EX+DfddNMjjzzCUQvsIJiYFs22vuM73/lOokBxkYzYf/GLX8yfP7+45GGqyr3n dwcE4/YbbrjhqKOOYluHMGsPMwPCwniCOAmCQzqZlOFXcwVwLthhmcxJcfdBRJizS/ABbbLJJpF4 +4phnPT50EMP4fhg/wWrXD/bld0rI/MmuMRRGr/97W/tbM5EnYoUAREQAREQAREQgTogIAdEHVSi iiACIlA2Aj5K5KBENiAsTi8zIBi4MvjMu5bh1VdfJQuGoxz06HkxuL3//vuPPPLIXN4HJHntzwt2 AgVtXelZ5Aow4aJot0sunWWPD6eKcA7F0UcfnSsLP+qCumA6w7HHHptLMoyHP+dlErPddtuF8WEY zxGzFXIdm8pkh8svv9w26cCRhAMi3Fsk7i656667KFTYBsK8FBYBERABERABERCBuiGwfN2URAUR AREQgRIJ8OZ/1qxZpoQ1Ef7+vFC1LIuwSRB2kkJKcjtOklf67du3NzG2Kvzd737HTgcsK0hJyDEN XMVLwkYVKWJ1eclnQFA6DrDEs5CrmKGrom/fvmuttVYuyTCejTnwHcA27ilwMRxVTGRAxmPCAHtY mveBSKugGTNm4JUwmdB+YiZNmvT000+zOUV5J7NYXuFf5mWEXxUWAREQAREQAREQgcYnoBkQjc9c OdY5gXnvLDjipLMp5MDTT+rRvcg5/EUwmvLCy/3P/X3j51uEqdWThIEik/MZmLGcYcGCBRMmTGBm gZnHBPsHHniAOQj4AthfAGdEp06dMlqOMMNOXqTbQDRxewJTxVt0dp1gNwebzoA/4oorriAVZzqE g+d4vuba+Pa3v+2ei7hMvca4HwHI6W4a34yDyQV77rlnRiA0AySpmlzrNWgtVG7K9ha2cwfuiR// +Md4FmhUOJVoSwRYO8NhnHvvvbcZM378+D/84Q+svDjllFMi6zJoFSwGyWgzYiyfCU8ejSeUAyLO RDEiIAIiIAIiIAKNTEAOiEYGruxEQASqhQCjuz59+jDMSxyYsQvAxRdfbLYyMmS1/4gRI7KbzgaW jC0ZbfLeO9dOAWj76U9/ev7553OUw5AhQ5g0MW7cOKy69NJLv//976fkxdt13tIjQJJ0P0WKktq9 5MPsn//8577IIrE45qrAhXTiiSe62yJR0iPxAb344ot85QTWXBt82naSKfMjOJUDdwO1/+GHH7JN 5tixYwnQnHA2XXnllcRQ4xzhSUZPPfVUly5dzjnnHD85xS0ZPnw4G0n417wB9FxyySV5xSQgAiIg AiIgAiIgAk1IQA6IJoSvrEVABJqSAK+p99tvPzZr4MPL6nCeAi4JlkIwzmdiggU6d+5ckK0MQa+/ /nr0cM5FigNin332wbtxzz33MEWfl+oc+ohPJO95nPPmzZs9ezb27LbbbgVZVR/C5kqAVd7tKmxR A2LZQXH+ha2LSalxHAecZJGy9IMpMHiUbr/9diY7PPPMMxxvgaeJvxxrgs/oz3/+M62CT9u2bXE9 HHDAAX6waFhBP/jBD/bYY48wJj2c18OS6GhL16mrIiACIiACIiACIlBeAnJAlJentImACNQMAd5v X3jhhRUyl9UBjJAZqT7xxBNHHHFErtM0yZ3p93xwc+ABiUzCz2Ub3gpWiPDOvFu3brlk6jh+++23 HzRoEH9zbcHgZd99992ZIcLfjGBJaJtrEMi1uyc1dcLimfMAAEAASURBVMcddxxzzDHpuVP7rKOx Mb/nThKqjA9KyCJdA+2Tj5dFAREQAREQAREQARGoAwJyQNRBJaoIIiACVUegRYsWvMHGATFt2rS3 3nor13EJbnf6WNTFLMAcfgIs00iZWxFJUk9f2dmBWQNZSrRewyeLpMv4mg721/DIMMBKHNwHBx54 YBiZK+yuh4hAQdUdSVv0V98Xs2gNSigCIiACIiACIiACJRLQKRglAlTypiewaMnH2Y0oSBi1KfIp l+L2VEi4ILVxqxRTUQKs72CiPgdAchBjGTN68803n3/+eSbtc6hkrvFtGbNrbqrYrtK21WATkHjZ Ofzizjvv/NWvfhU5ySIuqRgREAEREAEREAEREIE4Ac2AiDNRTKMSGDvuH/wjy2sHLzs5IvxMfWHm rffcT8x5p53U9rut7ZId9MDpErvttN3IBx4bef9jNghvu+46PfbZ9aTeh4YaPDx23ISx4yZyToTF dN1m816H7LP7Tl1dgMDQW+555bU5HTZp36f3oWjGqnlvLyC+1eqrIdmn9yFtv7sOeeW6FKry8OzX /nPVLcP5a0aSL5bnOhoD826754HQyFzCHLSxzIy//8PUdthkg6MP2bfNul8j8twVaFoCvEs/7rjj Lrvssoceeujoo48u126R7CCAU4PdAdh0sGkLWJe5s5MClXXzzTfDmYM2mclixWTWw8MPP3zdddf1 79+fNR3VX3aOd2HKA2bPnTvXrMWlwrQOVvrgvWLfk+ovgiwUAREQAREQARGoPwJyQNRfndZYiRhL +5A7Yvq8d96NX7KYtuu2xjdhDgJLhZ5b/3z//LcXnnd6n1APQ/TBQ297cvKUMBIl/Dvph4eGDgu8 D0Si86nJU0PNaHhw3AQu/fa8/ucMvjbx0rCrL8JPEWZBGD2Dht4aRlq+mBrmawJX3XLPiPsfyyJM crwwoRk4OMgo4k8JVSncVAQ4qfHuu+/myMzHH3/80EOTvWMF2cbBCqNHj8a10bt3b01/KAhdduET TjiBPT45n+Lkk09mqQXncb7zzjt8ffXVV0877bSePXtmV9WEkkOHDp08eTK7qHK+rJlx1llnsXoF 1wPlqpVSNCFAZS0CIiACIiACIlAJAnJAVIKqdFacwIPj/sGAn2G8zSZgTH7pVbcxJsdTcGD3XZho 4Bbcds/95n1AuNeh+5KK4TrCs177Dw6L7bbuFAqTClURzVffMhxh4n927u8XL/mYuQa9DtkXScIj bKLEOwvI5bS+vT1TCzw1eQrzMk47+ZgOG29AzNQZL996zwMYGc8XZ4p5H0w5Uy0wEmE0INxy9dWI d+XufQiLP/KBvyPsMgpUCQH2ibz88st/9rOfXX311ZyqsNFGG5ViGCeGsmsmJzgyDGYLxlJUKW0K ASYIsH/kv/71L6auPPDAA8wjYAuPvfbaiyG9T4hISV4ll5jHgc+L+Q583CQ72IWdMTxGAREQAREQ AREQARFoTAJyQDQmbeVVTgIs2WDpgWlkxH7eaX1sdcbs1+e4T4EZBzawZ6zOfAcTJhVpjz/tInwB LHlwYTcuopmvR5x0NvMg8DiEepAfePpJ899ZSC5PTZoad0DgfSAttn1jZLftttn8hF9chKowX1wb eBmQCZVjJBMuKBHKueoOCNaS2NwHsjv60K+9EmRBKS4deit+GS+FAlVCgH0iOYLxd7/73RVXXMHR jCnHYeQ1mLkPEyZM4OROdn/IKyyBUggwaOfITD6lKGnatJtttlnTGqDcRUAEREAEREAERCBO4H8v RuLXFCMCVUugR/du7n0wIxmB2yKI2a/9b+s45gVwFUeAex9MmDkFNouB4T3ugLCYCEc0I7zbztuZ THz7BvaM4BJOhFCJhZlw4d4Hi0E5G1UQDvO9rcH7QC5x5Ww8gTCOD6ZgmAZ2siCAHvc+WDx/D+y+ TLM+VUjgkEMOOf7445kPz7YCRZvHgRpsTMAWieecc07RSpRQBERABERABERABERABJqQgBwQTQhf WRdPwPekDFW0bBndhWFqw66Tu3/jPgiFWXxhX00mvJQSjjgUkMRxkEveHCKRq9tt/fXyEJvIwFWm bPC36zad4so7fjPF45UGGcTwXPA3sUTE61O1BE455RQcB9dff/2jjz5ahJHsQTBgwICuXbteeeWV 7JJYhAYlEQEREAEREAEREAEREIEmJ6AlGE1eBTKgUgSYlWCzG1gfEU6LsPx84sPiJZ9UyoIkvTZj giv4FMy/YLMbsNCWkCQl+nqGhc+zaLPu18s6EoUVWZ0EWJC/xRZbrLNOMXXXqlUrdn/o1KnT6quv Xp2lk1UiIAIiIAIiIAIiIAIikJeAHBB5EUmg5gkwbvehe9UWpiAjE+dWVG3RZJgRYPeHLbfcsjga bGbJ9Ifi0iqVCIiACIiACIiACIiACFQJATkgqqQiZEYFCbBhRNdtOubKwNdi5BIob/yixf9nywlX ziGau+/Uxb9GAnaORiRSX0VABERABERABERABERABESghgjIAVFDlSVTCyPg0wRY9YAPorDEFZNm R0nT3Wbd1hbATtaDNGxCmcdIL9Hs19mTUltOVqySpFgEREAEREAEREAEREAERKACBLQJZQWgSmUh BHwTx3lvLywkXX5ZNNu2jk9PnppfurEkHvrmpExOsrA87dCNpyZPyWuClyi+pUXetBIQAREQAREQ AREQAREQAREQgaYlIAdE0/JX7t9qtfqqRmHeO+9GcEx9YWYkptCvdrAlJ0c8+M2wP9Qw4oHH/CiK ML5cYfT7Vpemk40epsxYVigODfUzL3p034UYZkbces/98axR4mdwctVLZMdhhPJTGzSHMQqLgAiI gAiIgAiIgAiIgAiIQPUQkAOieuqimVrC3ge2suDSobe5O4Bx+1W33JPoNSgI09GH7Gvj/EuH3spI 3tOif8Cl11518z3Hn3aRR5Y9MPu1/5CLF4qv53zz1fwIlmPDFhXLzua89c/3hz4Ig4CRJ5x2kSuh RIYLVWO/8aqYJMnLXgQpFAEREAEREAEREAEREAEREIFyEdAeEOUiKT1FEmBZQa9D92XwzOyAI/qe bf4CG28T9oF3cdpRfu3gszneEj2M5G/78/2sd1h23sTbC0zhaSf3Lk5zllRMc2CeAoXCZdCy5Wqe KU6E0AGBqvNO72NGLvNB/Pl+EoZGntT7UJ8uQYkQxvvAjIlBQ2+lUK65dFxZCiUZERABERABERAB ERABERABESiOgGZAFMdNqcpJgAE2/0wjo3T+MWIn5rzT+pSeDVst4INgwI9OZgrgETBHAIP8O666 6KDuFdzKsU/vQwae3ge/APlapthwWt/eca8HRmKMz9cIjcT4k374NRyjwZwRIs0lYZoNF5Gl45IG ERABERABERABERABERABEagQgeWWLl1aIdVS29wI9Ot3MkW+sP8xRRfc9jVgON3mu+vwt2g9uRJW Wn+ufFl8gacgY7lMGFVM1kiHUJDaXLaF8b+5djhfb7zx5jCy8cODBg0i04EDBzZ+1spRBERABERA BERABERABESgcgS0BKNybKW5YALMSig4TSEJKq0/ly12zkWuq5H47MLZJSNZ6KsIiIAIiIAIiIAI iIAIiIAIND4BLcFofObKUQREQAREQAREQAREQAREQAREQASaHQE5IJpdlavAIiACIiACIiACIiAC IiACIiACItD4BOSAaHzmylEEREAEREAEREAEREAEREAEREAEmh0BOSCaXZWrwCIgAiIgAiIgAiIg AiIgAiIgAiLQ+ATkgGh85spRBERABERABERABERABERABERABJodATkgml2Vq8AiIAIiIAIiIAIi IAIiIAIiIAIi0PgE5IBofObKUQREQAREQAREQAREQAREQAREQASaHQE5IJpdlavAIiACIiACIiAC IiACIiACIiACItD4BOSAaHzmdZvjaqutRtk+/eyLui1hXRfsg0VL6rp8KpwIiIAIiIAIiIAIiIAI iEATE5ADookroJ6yb9euPcV5ZMIUDWVrrlpxGz357AzM7tJlu5ozXgaLgAiIgAiIgAiIgAiIgAjU BIEVa8JKGVkTBE444cRBgy6e9tLr/KsJg2VkhABzWHr16hWJ1FcREAEREAEREAEREAEREAERKAsB zYAoC0YpWUagdevWAwde0KVLF+GoOQK4Hjp27Dhw4PmtW69Tc8bLYBEQAREQAREQAREQAREQgZog sNzSpUtrwlAZKQIiIAIiIAIiIAIiIAIiIAIiIAIiULsENAOidutOlouACIiACIiACIiACIiACIiA CIhAzRCQA6JmqkqGVgmBSZMmzpo1s0qMkRkiIAIiIAIiIAIiIAIiIAIiUCsE5IColZqSndVCYPTo 0cOG3V4t1sgOERABERABERABERABERABEagRAnJA1EhFyczqIDBu3LiFCxcsXLhw9OgHqsMiWSEC IiACIiACIiACIiACIiACtUFADojaqCdZWQ0E8DuMG/d3s2T8+HEff/xxNVglG0RABERABERABERA BERABESgJgjIAVET1SQjq4IAsx6Y/mCm4H0YM2Z0VZglI0RABERABERABERABERABESgFgjIAVEL tSQbq4AA0x/YfjI0hNkQ2o0yBKKwCIiACIiACIiACIiACIiACKQQkAMiBY4uicD/CCRuPMmGlP+T UEgEREAEREAEREAEREAEREAERCA3ATkgcrPRFRH4hkCuozeZATFt2tRvpIr//2effTZ79uw5c+b8 97//dS0ffPDByy+/vHjxYo9RQAREQAREQAREQAREQAREQARql8CKtWu6LBeBRiOQMtNh5MgRHTt2 Wm211Yozhr0kRo4cOXHixOWXX/6TTz5p06bNj370o06dOo0aNeqJJ55YccUVv/zyy3322eeYY44p Tr9SiYAIiIAIiIAIiIAIiIAIiECVEFjhoosuqhJTZIYIVCcBvA/Tp+ec5oDXYKWVVsJlUITxzHe4 /PLL33///X79+vXq1WubbbZ58sknp0yZwn4Tzz333IABA/bff/+XXnrp2Wef7dq161prrVVEFkoi AiIgAiIgAiIgAiIgAiIgAlVCQDMgqqQiZEb1Eji44VMJ++6999758+cPGjRojTXWQP/mm2/ODIhX X311/PjxAwcO3GCDDf7whz+89tprXPrPf/6z0UYbVcIG6RQBERABERABERABERABERCBxiGgPSAa h7NyqR8CEyY8zb/Sy8PEh0ceeaRv377mfTCFn3/+OQFcD0ypYPEFu0LwtUWLFvgmSs8RDUuXLn3n nXfKokpKREAEREAEREAEREAEREAERKAgAnJAFIRLwiLwrQUNn9JBPPPMM6yq2GqrrVzVp59++t57 7/HVJjuwAUTPnj3xRBx33HHrrruuixUXYLnHu+++y9YSTLj46KOPilOiVCIgAiIgAiIgAiIgAiIg AiJQNAEtwSganRKKQEkEdt9991122WWFFVZwLayzWLJkCV+32GILi9yv4eMCxQW++uqrO+6448UX X+SsDc7UWHXVVYvTo1QiIAIiIAIiIAIiIAIiIAIiUAoBOSBKoae0zZHAOuusU5Zixw/OmDp12VaX bGm59dZblyULU7LccsvtvPPO3bp1W2+99c4+++wyapYqERABERABERABERABERABEchOQA6I7Kwk KQLLCHTrtluFQLzxxhtoXnvttddcc80yZsEBnzalgiUeZVQrVSIgAiIgAiIgAiIgAiIgAiJQEAHt AVEQLgmLQKUIsEfD66+/jvZNN92UOQuVykZ6RUAEREAEREAEREAEREAERKCJCMgB0UTglW2zJ8CB FKy5eOGFF4wEp2/aBhCdO3cO2UyaNGn48OFhjMIiIAIiIAIiIAIiIAIiIAIiUIsEtASjFmtNNjcl ATuDs/SFGLgVxo4dS0kGDx7cvn376dOnW6k23HDDsHjIbLLJJmGMwiIgAiIgAiIgAiIgAiIgAiJQ iwQ0A6IWa002NyWBshzD+fHHH0+cOJFisNriy4bPjBkzrFStW7f24j311FPvvPPOQQcd5DEKiIAI iIAIiIAIiIAIiIAIiECNEtAMiBqtOJld2wTwO3AAJ9tDHnLIIUx5GDdu3Ny5c9dYY42PPvpozpw5 HTp0oHjTpk275557jjrqqHXXXTcsLTK4LMKYxHDLli1XXnnlxEus/kiMV6QIiIAIiIAIiIAIiIAI iIAIVI6AHBCVYyvN9UmgLMdwrrrqql26dHnyySffeuuta665hukPJ554IpE33HDDtddeu8022+Bl mDlzZs+ePffee++Q44cffjh06NAs51n8+Mc/3mqrrcK0CouACIiACIiACIiACIiACIhAExJYTu9C m5C+sm7mBJ577jm2fmA2xAEHHNC2bVtozJs37+mnn2aVB7Me9tprr3A5RumscFv88pe/RA+7Tqy1 1lqlK5QGERABERABERABERABERABEchOQDMgsrOSpAiUmcD3Gj6hUtwQvXr1CmMUFgEREAEREAER EAEREAEREIH6IKBNKOujHlUKEchKQJOespKSnAiIgAiIgAiIgAiIgAiIQFkJaAZEWXFKWTMgUK5j OBsf1RdffPHVV1/hgPj8888bP3flKAIiIAIiIAIiIAIiIAIi0MwJyAHRzBuAil8wATZoKDhNUye4 5ZZbXnrppSVLluCDwJYLLriAMzJY7nHmmWc2tWnKXwREQAREQAREQAREQAREoLkQkAOiudS0ytmc CbDJJadpsNslH+PAVIgWLVo0ZyYquwiIgAiIgAiIgAiIgAiIQCMTkAOikYEru5onUJZjOBuZQrt2 7Ro5R2UnAiIgAiIgAiIgAiIgAiIgAhECOoYzAkRfRUAEREAEREAEREAEREAEREAEREAEyk9Ap2CU n6k0ioAIiIAIiIAIiIAIiIAIiIAIiIAIRAjIAREBoq8iIAIiIAIiIAIiIAIiIAIiIAIiIALlJyAH RPmZSmN9E+AYTjuJs76LqdKJgAiIgAiIgAiIgAiIgAiIQHkJaBPK8vKUtvonUIvHcNZ/raiEIiAC IiACIiACIiACIiACVU9Am1BWfRXJQBEQAREQAREQAREQAREQAREQARGofQJaglH7dagSiIAIiIAI iIAIiIAIiIAIiIAIiEDVE5ADouqrSAaKgAiIgAiIgAiIgAiIgAiIgAiIQO0TkAOi9utQJRABERAB ERABERABERABERABERCBqicgB0TVV5EMrDICkyZNnDVrZpUZJXNEQAREQAREQAREQAREQAREoNoJ yAFR7TUk+6qNwOjRo4cNu73arJI9IiACIiACIiACIiACIiACIlDlBOSAqPIKknnVRWDcuHELFy5Y uHDh6NEPVJdlskYEREAEREAEREAEREAEREAEqpuAHBDVXT+yrpoI4HcYN+7vZtH48eM+/vjjarJO toiACIiACIiACIiACIiACIhAVROQA6Kqq0fGVRUBZj0w/cFMwvswZszoqjJPxoiACIiACIiACIiA CIiACIhANROQA6Kaa0e2VREBpj+w/WRoELMhtBtlCERhERABERABERABERABERABEUghIAdEChxd EoH/EUjceJINKf8noZAIiIAIiIAIiIAIiIAIiIAIiEBuAnJA5GajKyLwDYFcR28yA2LatKnfSOn/ IiACIiACIiACIiACIiACIiACOQnIAZETjS6IgBNImekwcuQI7UbpoBQQAREQAREQAREQAREQAREQ gVwE5IDIRUbxIvA1AbwPvvdkHEp4NEb8qmJEQAREQAREQAREQAREQAREQASMwHJLly4VCxEQgewE +vU7GeEbb7w5exJJioAIiIAIiIAIiIAIiIAIiIAIaAaE2oAIiIAIiIAIiIAIiIAIiIAIiIAIiEDF CcgBUXHEykAEREAEREAEREAEREAEREAEREAEREAOCLUBERABERABERABERABERABERABERCBihOQ A6LiiJWBCIiACIiACIiACIiACIiACIiACIiAHBBqAyIgAiIgAiIgAiIgAiIgAiIgAiIgAhUnIAdE xRErAxEQAREQAREQAREQAREQAREQAREQgRWFQAREICOBuXPn8DHh0aMfWG211dq3b9+uXXsCGTVI TAREQAREQAREQAREQAREoAgCgwYNSk81cODAdIEsVxcuXGhirVu3ziIvmUIJyAFRKDHJNzsCs2bN nDhx4vTp0z7++GMv/Jgxoz2MD6JLl+122WXn1q3X8UgFiiZgvy5l+Qkp2gYlFAEREAEREAEREAER aD4E6Oc/3vDxDj+vGLfddtuDDjpInojyNgM5IMrLU9rqigCuh9GjR/PXSrXWGqtvuP66LVZeucUq KxHz6WdfzF/w/tsL3mdmBP/GjHlg5513Ofjgg+WGqKtGoMKIgAiIgAiIgAiIgAhUAYGUt1N5J0ek mz99+vS77rrLXQ8mzNfJDR98EHzSNehqdgJyQGRnJclmRIAnzh13DJs2bSplxt2wY+dOXbbYeK1W qycieOPNd6a9/Pr0l16fNGki3oqePQ/ZZZddEiUVKQIiIAIiIAIiIAIiIAIiUD0EZs2adeONN2IP Ux722muvzp07r7rqqp988sncuXMffPBBVmTwl6vyQZSryuSAKBdJ6akfAjxorrji8oULF+B62GOH rXfq3Cm9bButvy7/9txh6yeenYEb4o47bkcDUyHSU+mqCIiACIiACIiACIiACIhA0xJg7gMGsM7i 9NNPD1dbtGvXDmfEkCFDzBPRoUOHjh07Nq2p9ZG7HBD1UY8qRdkIuPehzTrfPvqgbrlmPcTzQ/Kw 7juS6pGnp7AcA4HifBAvNHwWLFiw9tpr77TTTpttthmqXnrpJaaAMS9jww033HPPPVu2bBk3QDEi IAIiIAIiIAIiIAIiIALZCdDBpvOPPBMcQu+DaWAqRL9+/S677DI64WPHjs3rgEAs4+b02SWzl6VW JOWAqJWakp2NQYBngc19wI9w/OF7214PBWW8U+eOG63/nTvuG48PggdQ9+7dsydfvHjxbbfd9u9/ /5sNbzbYYAMeiI888kjv3r1XXHHFBx54YNddd23RosWYMWP++c9/nn/++URm1yxJERABERABERAB ERABERCBCIHx48cTg+uB136RS/bVLiHGSo3Qa3DnnXe+9957dNpJyOaV7shAnrkSRx55ZKInAiUs 6HjzzTdRhX48GiTnk5h1vUZqDFOvNatyFUOAsy1YecFmk8V5HyxLnBf7d+t6/7hnRo4c3qlTR87I yGLKp59+ev311y+33HIXXHDBmmuuSRKeaGyoM3z4cJyv5557bps2bYYOHcrT6vXXX2d+BF+zqJWM CIiACIiACIiACIiACIhAnIBt9EA8ve74VY/BTWB+iueff96dBbNnz2bqBG8HcT2wRsOFieSDb4IF HR5pgXvvvdf0eDz+CD7IN6sNJuSA8AagQHMnwM0/btzfoVCK98EgsmMlB2Q8M33WiBEjzjzzrCxk n3jiCTwLv//97315xUorLTtrY+nSpdtttx0rL+bMmTNjxgxieNKttdZaWXQWJ0OOS5YsYYYFGRWn QalEQAREQAREQAREQAREoMoJ0Ls2Czt1Stvxbf311zcxBguREuGSIAb3gTkmEMDLgD8CtwKXQr8G Ex/M+8A+l3vvvTcTJRAjBv8Fl3jdSGREeb1+lQOiXmtW5SqYwOjRyzZu6Jz7tIuCNO65wzbTX36d QzH417Fj2kMNtV988QVPn3333de9D0TOnz+feALbb789f3lO4YlYtGjR/vvvH3cN3HfffY899tjZ Z5+90UYbIVzch+zwg7DuA38w60E23XTTHj16WO7FKVQqERABERABERABERABEahOAsxTMMPiXevQ YDrh9jXugCCe1RbuO0DyjDPOYK00c5anTZvmDggS+lEaPtmBTS6PO+44LjGZgquuJMy6LsNyQNRl tapQBRPg5ucQTZJxmEXBiZMS2OGdTz47Y+LEiXkdEEx2OOussyLPPk4kRjHrx7bYYgsL/PKXv0zK 6luff/45DlT+rrDCCokCRDKvgd0l0t0T11xzTdu2bS+88MJVVlmFxWl//OMfr7rqKnwQ7EORS63i RUAEREAEREAEREAERKB5EmB1RsRxwFwGNpLHAeHeDciY94GAr+BwXPgjWGTNyz8mTaDN4+s4sHwd l01FE4HsBJingHCnTdrlPfbiqclTj+h79lOTp+RVzkIMZKZPn5ZXEgHmPoT7Sn755ZfmgFhvvfVW X331dA0rr7zyb37zm6uvvrp9+5z7TTC74YYbbkjRw/oOPuTVqlUrFG688cZ9+vRhT4qHHnoIv2xK Ql0SAREQAREQAREQAREQAREwAvggIihskwj8Cz6ZwgW89x46LPxqXQY0A6Iuq1WFKpjAzJnLHBAc YJE35eIlS+a9vWDxkk/ySuLLYD/LDz5awp6R66yzTl75UID1Fx999BEx22yzTRifK4yrNdeljPHM j8BJMWrUKNZc4PUg1ZZbbolbhEUfOCbYzjejHomJgAiIgAiIgAiIgAiIgAg4AXNAMOGayQ4eGQlw NRJTr1/lgKjXmlW5CiNg9zwHWBSWLJ80CnFAzJ07p1AHBGP+//73v6jv0qVLmMn777/POos11ljD I1955RWmbOGncAeqXwoDLMEIv8bDTAkjU/yy6667rl9lAQgOCOZBeIwCIiACIiACIiACIiACIlAH BPykzPTZB6yPsMLG5y8UBIHhho04CkpVf8JyQFSwTln8w8R+b7IVzEmqSyaAjwAdbNxQsqb/o2CV lZcp/PjjPNMlvvrqK87LYLNctpk8+uijSfLss8/yl10hNthgA9eI2JAhQ/A1HHXUURY5evTo1157 7Tvf+Q4bN7BDxNZbF7+BBY/UX//6154XASZuvPvuu8svv3znzp3DeIVFAAL8grLHEgHWLvIRk7IT 4BeEn48S+zplt6oOFHJyO5v+AvaSSy5pnOIUmiN3FvcXM3XjR7iVaLDftmx7Fl+HXKLyciWvXPHL ZWHpegq9u0899VQypcqouNJzz6vBWixi1113XV5hCYhATRPw4y04DiPlqeiHZaS/7cuLgh51Sqea PSnzaqgPATkgKlKP/LTcccewadOmVkS7lFaMQItVVk7UPfWFmbfec79dYv0FgZEPPDZ23D8sptch ++y+U9fEhBkjJ0yYwFYLCONiwLnwwQcf4FbgK+dQhBtDPPPMM2+//bZ1RLj6xhtvvPDCC/gd2C2C 5G+99VYpDoiIqcyY+Otf/8osjF122YX9ICJX6/grHXSbHcegOuWnqCwEbACPKjuQKa9OdvFgc1DE