Why it’s critical to move beyond overly aggregated machine-learning metrics
news.mit.edu·1d
🏆LLM Benchmarking
Preview
Report Post

MIT researchers have identified significant examples of machine-learning model failure when those models are applied to data other than what they were trained on, raising questions about the need to test whenever a model is deployed in a new setting.

“We demonstrate that even when you train models on large amounts of data, and choose the best average model, in a new setting this ‘best model’ could be the worst model for 6-75 percent of the new data,” says Marzyeh Ghassemi, an associate professor in MIT’s Department of Electrical Engineering and Computer Science (EECS), a member of the Institute for Medical Engineering and Science, and principal investigator at the Laboratory for Information and Decision Systems.

In a paper that was presented at the…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help