Abstract

The use of nucleic acid-based nanostructures as synthetic biological tools to interface with and regulate cell processes remains challenging. A major obstacle lies in nuclear delivery and retention within live eukaryotic cells. Here, we present a platform of single-stranded RNAs that can co-transcriptionally fold into defined nanostructures and assemble into rings, ribbons, and nanonet-like architectures. We validate the formation of these structures in vitro using atomic force microscopy. Then, we demonstrate the functional integration of fluorescent aptamers and RNA sensing capability within the single chain by co-folding with these structures. Notably, we show that the RNA nanonets can be co-transcriptionally produced and assembled directly inside the nucleus of live h…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help