Abstract
Glucocorticoid-producing cells of the adrenal cortex (i.e. zona fasciculata, zF) constitute the critical effectors of the hypothalamic-pituitary-adrenal axis, mediating the mammalian stress response. With glucocorticoids being essential for life, zF dysfunction perturbs multiple organs that participate in optimizing cardiometabolic fitness. The zF forms a dynamic and heterogenous cell population endowed with the capacity to remodel through the engagement of both proliferative and differentiation programs that enable the adrenal to adapt and respond to diverse stressors. However, the mechanisms that sustain such differential responsiveness remain poorly understood. In this study, we resolve the transcriptome of the steroidogenic lineage by scRNA-seq using *Sf1-Cre**hiβ¦
Abstract
Glucocorticoid-producing cells of the adrenal cortex (i.e. zona fasciculata, zF) constitute the critical effectors of the hypothalamic-pituitary-adrenal axis, mediating the mammalian stress response. With glucocorticoids being essential for life, zF dysfunction perturbs multiple organs that participate in optimizing cardiometabolic fitness. The zF forms a dynamic and heterogenous cell population endowed with the capacity to remodel through the engagement of both proliferative and differentiation programs that enable the adrenal to adapt and respond to diverse stressors. However, the mechanisms that sustain such differential responsiveness remain poorly understood. In this study, we resolve the transcriptome of the steroidogenic lineage by scRNA-seq using Sf1-Crehigh; Rosa**mT/mG reporter mice. We identify HHEX, a homeodomain protein, as the most enriched transcription factor in glucocorticoid-producing cells. We utilize genetic mouse models to demonstrate that Hhex deletion causes glucocorticoid deficiency in male animals. Molecularly, we demonstrate that HHEX is an androgen receptor (AR) target gene, shaping the sexual dimorphism of the adrenal gland by repressing the female transcriptional program at puberty, while also maintaining zF cholesterol ester content by protecting lipid droplets from androgen-induced-lipophagy. Moreover, our study reveals that, in both sexes, HHEX is crucial for maintaining the identity of the innermost adrenocortical cell subpopulation. Specifically, loss of HHEX impairs the expression of Abcb1b (P-glycoprotein/MDR1), an efflux pump regulating steroid export and cellular levels of xenobiotics. Together, these data demonstrate that HHEX serves as a multi-functional regulator of post-natal adrenal maturation that is potentiated by androgens.
Data availability
All sequencing datasets generated in this study have been deposited in the Gene Expression Omnibus (GEO) database under the accession code GSE291343, GSE291472, and GSE291344. Processed data are provided in Supplementary Data 1. The CLOUPE file related to the scRNAseq dataset presented in this manuscript is accessible at the following address [https://doi.org/10.6084/m9.figshare.28612406]. Source data are provided with this paper.
References
Kuo, T., McQueen, A., Chen, T.-C. & Wang, J.-C. Regulation of glucose homeostasis by glucocorticoids. Adv. Exp. Med. Biol. 872, 99β126 (2015).
Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233β247 (2017).
Dickmeis, T. Glucocorticoids and the circadian clock. J. Endocrinol. 200, 3β22 (2009).
Marin, M.-F. et al. Chronic stress, cognitive functioning and mental health. Neurobiol. Learn. Mem. 96, 583β595 (2011).
Shimba, A. & Ikuta, K. Glucocorticoids regulate circadian rhythm of innate and adaptive immunity. Front. Immunol. 11, 2143 (2020).
Lacroix, A. Cardiometabolic morbidity of mild cortisol excess. Ann. Intern. Med. https://doi.org/10.7326/M21-4526 (2022).
Mitani, F. et al. Cytochrome P-45011 beta and P-450scc in adrenal cortex: zonal distribution and intramitochondrial localization by the horseradish peroxidase-labeled antibody method. J. Histochem. Cytochem. 30, 1066β1074 (1982).
Sugano, S. et al. Monoclonal antibodies against bovine adrenal cytochrome P-450(11 beta) and cytochrome P-450SCC. Their isolation, characterization and application to immunohistochemical analysis of adrenal cortex. J. Steroid Biochem. 23, 1013β1021 (1985).
Ogishima, T., Suzuki, H., Hata, J., Mitani, F. & Ishimura, Y. Zone-specific expression of aldosterone synthase cytochrome P-450 and cytochrome P-45011 beta in rat adrenal cortex: histochemical basis for the functional zonation. Endocrinology 130, 2971β2977 (1992).
Ho, M. M. & Vinson, G. P. 11 beta-hydroxylase gene expression in the rat adrenal cortex. J. Endocrinol. 139, 301β306 (1993).
Erdmann, B., Denner, K., Gerst, H., Lenz, D. & Bernhardt, R. Human adrenal CYP11B1: localization by in situ-hybridization and functional expression in cell cultures. Endocr. Res. 21, 425β435 (1995).
Gomez-Sanchez, C. E. et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol. Cell. Endocrinol. 383, 111β117 (2014).
Arakane, F. et al. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J. Biol. Chem. 272, 32656β32662 (1997).
Clark, B. J. et al. Hormonal and developmental regulation of the steroidogenic acute regulatory protein. Mol. Endocrinol. Baltim. Md 9, 1346β1355 (1995).
Lopez, J. P. et al. Single-cell molecular profiling of all three components of the HPA axis reveals adrenal ABCB1 as a regulator of stress adaptation. Sci. Adv. 7, eabe4497 (2021).
Lerario, A. M., Mohan, D. R. & Hammer, G. D. Update on biology and genomics of adrenocortical carcinomas: rationale for emerging therapies. Endocr. Rev. 43, 1051β1073 (2022).
Paz, H., Lynch, M. R., Bogue, C. W. & Gasson, J. C. The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood 116, 1254β1262 (2010).
Guiral, M., Bess, K., Goodwin, G. & Jayaraman, P. S. PRH represses transcription in hematopoietic cells by at least two independent mechanisms. J. Biol. Chem. 276, 2961β2970 (2001).
Swingler, T. E., Bess, K. L., Yao, J., Stifani, S. & Jayaraman, P.-S. The proline-rich homeodomain protein recruits members of the Groucho/Transducin-like enhancer of split protein family to co-repress transcription in hematopoietic cells. J. Biol. Chem. 279, 34938β34947 (2004).
Yang, D. et al. CRISPR screening uncovers a central requirement for HHEX in pancreatic lineage commitment and plasticity restriction. Nat. Cell Biol. 24, 1064β1076 (2022).
Bort, R. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 131, 797β806 (2004).
Bort, R., Signore, M., Tremblay, K., Barbera, J. P. M. & Zaret, K. S. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44β56 (2006).
Keng, V. W. et al. Homeobox gene hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem. Biophys. Res. Commun. 276, 1155β1161 (2000).
Martinez Barbera, J. P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Dev. Camb. Engl. 127, 2433β2445 (2000).
Zhang, J., McKenna, L. B., Bogue, C. W. & Kaestner, K. H. The diabetes gene Hhex maintains -cell differentiation and islet function. Genes Dev. 28, 829β834 (2014).
Alfaifi, M. Contribution of genetic variant identified in HHEX gene in the overweight Saudi patients confirmed with type 2 diabetes mellitus. Saudi J. Biol. Sci. 29, 804β808 (2022).
Wang, X. et al. The association between HHEX single-nucleotide polymorphism rs5015480 and gestational diabetes mellitus: a meta-analysis. Medicine (Baltimore) 99, e19478 (2020).
Li, C. et al. Association between single nucleotide polymorphisms in CDKAL1 and HHEX and type 2 diabetes in Chinese population. Diabetes Metab. Syndr. Obes. Targets Ther. 13, 5113β5123 (2020).
Ragvin, A. et al. Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc. Natl. Acad. Sci. USA 107, 775β780 (2010).
Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881β885 (2007).
Cauchi, S. et al. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS ONE 3, e2031 (2008).
van Vliet-Ostaptchouk, J. V. et al. HHEX gene polymorphisms are associated with type 2 diabetes in the Dutch Breda cohort. Eur. J. Hum. Genet. 16, 652β656 (2008).
Chiang, C.-W., Chou, Y.-H., Huang, C.-N., Lu, W.-Y. & Liaw, Y.-P. Gender-specific genetic influence of rs1111875 on diabetes risk: insights from the Taiwan biobank study. J. Diabetes Investig. https://doi.org/10.1111/jdi.14359 (2024).
Zhai, G. et al. Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms. PLoS Genet. 7, e1002025 (2011).
Vernerova, L. et al. Contribution of genetic factors to lower DHEAS in patients with rheumatoid arthritis. Cell. Mol. Neurobiol. 38, 379β383 (2018).
Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).
Bingham, N. C., Verma-Kurvari, S., Parada, L. F. & Parker, K. L. Development of a steroidogenic factor 1/Cre transgenic mouse line. Genes 44, 419β424 (2006).
Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593β605 (2007).
Basham, K. J. et al. A ZNRF3-dependent Wnt/Ξ²-catenin signaling gradient is required for adrenal homeostasis. Genes Dev. 33, 209β220 (2019).
Mathieu, M. et al. Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex. Proc. Natl. Acad. Sci. USA 115, E12265βE12274 (2018).
Dufour, D. et al. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat. Commun. 13, 7858 (2022).
Gjerstad, J. K., Lightman, S. L. & Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21, 403β416 (2018).
Ramamoorthy, S. & Cidlowski, J. A. Corticosteroids. Rheum. Dis. Clin. N. Am. 42, 15β31 (2016).
Holst, J. P., Soldin, O. P., Guo, T. & Soldin, S. J. Steroid hormones: relevance and measurement in the clinical laboratory. Clin. Lab. Med. 24, 105β118 (2004).
Rosol, T. J. & GrΓΆne, A. Chapter 3 - Endocrine glands. In Jubb, Kennedy & Palmerβs Pathology of Domestic Animals: Volume 3 (Sixth Edition) (ed. Maxie, M. G.) 269β357.e1 (W.B. Saunders, 2016). 1.
Acconcia, F. & Marino, M. Steroid hormones: synthesis, secretion, and transport. In Principles of Endocrinology and Hormone Action (eds Belfiore, A. & LeRoith, D.) 43β72 (Springer International Publishing, Cham, 2018). 1.
Lightman, S. L., Birnie, M. T. & Conway-Campbell, B. L. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr. Rev. 41, bnaa002 (2020).
Dailey, R. E., Swell, L. & Treadwell, C. R. Utilization of free and esterified gholesterol-4-G14 for corticoid biosynthesis by hog adrenal homogenates. Proc. Soc. Exp. Biol. Med. 110, 571β574 (1962).
Long, C. N. H. The relation of cholesterol and ascorbic acid to the secretion of the adrenal cortex. Recent Prog. Horm. Res. 1, 99β122 (1947).
Wang, N., Wang, W., Breslow, J. L. & Tall, A. R. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control. J. Biol. Chem. 271, 21001β21004 (1996).
Shroff, A. & Nazarko, T. Y. SQSTM1, lipid droplets and current state of their lipophagy affairs. Autophagy 19, 720β723 (2023). 1.
Wang, L. et al. Ethanol-triggered lipophagy requires SQSTM1 in AML12 hepatic cells. Sci. Rep. 7, 12307 (2017).
Kumar, A. V., Mills, J. & Lapierre, L. R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front. Cell Dev. Biol. 10, 793328 (2022).
Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313β326 (2010).
Freedman, B. D. et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 26, 666β673 (2013).
Pihlajoki, M. et al. Conditional mutagenesis of Gata6 in SF1-positive cells causes gonadal-like differentiation in the adrenal cortex of mice. Endocrinology https://doi.org/10.1210/en.2012-1892 (2013).
Mauthe, M. et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435β1455 (2018).
Beyer, C. & Komisaruk, B. Effects of diverse androgens on estrous behavior, lordosis reflex, and genital tract morphology in the rat. Horm. Behav. 2, 217β225 (1971).
Brown-Grant, K., Munck, A., Naftolin, F. & Sherwood, M. R. The effects of the administration of testosterone propionate alone or with phenobarbitone and of testosterone metabolites to neonatal female rats. Horm. Behav. 2, 173β182 (1971).
De Gendt, K. et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl. Acad. Sci. USA. 101, 1327β1332 (2004).
Nikkanen, J. et al. An evolutionary trade-off between host immunity and metabolism drives fatty liver in male mice. Science 378, 290β295 (2022).
Jo, S. et al. Sex differences in pancreatic Ξ²-cell physiology and glucose homeostasis in C57BL/6J mice. J. Endocr. Soc. 7, bvad099 (2023).
Dumontet, T. et al. PKA signaling drives reticularis differentiation and sexually dimorphic adrenal cortex renewal. JCI Insight 3, e98394 (2018).
Grabek, A. et al. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell 25, 290β296.e2 (2019).
Levasseur, A., Dumontet, T. & Martinez, A. βSexual dimorphism in adrenal gland development and tumorigenesisβ. Curr. Opin. Endocr. Metab. Res. 8, 60β65 (2019).
Yeung, K. Y. & Ruzzo, W. L. Principal component analysis for clustering gene expression data. Bioinforma. Oxf. Engl. 17, 763β774 (2001).
Lyu, Q. et al. RNA-seq reveals sub-zones in mouse adrenal zona fasciculata and the sexually dimorphic responses to thyroid hormone. Endocrinology 161, bqaa126 (2020).
Wakil, A. E., Mari, B., Barhanin, J. & Lalli, E. Genomic analysis of sexual dimorphism of gene expression in the mouse adrenal gland. Horm. Metab. Res. 45, 870β873 (2013).
Mukai, T. et al. Sexually dimorphic expression of Dax-1 in the adrenal cortex. Genes Cells Devoted Mol. Cell. Mech. 7, 717β729 (2002).
Devine, K. et al. The ATP-binding cassette proteins ABCB1 and ABCC1 as modulators of glucocorticoid action. Nat. Rev. Endocrinol. 19, 112β124 (2023).
Menzies, R. I. et al. Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses. Endocr. Connect. 6, 446β457 (2017).
Vogel, F. et al. Polymorphism in the drug transporter gene ABCB1 as a potential disease modifier in cortisol-producing adrenal adenomas. Exp. Clin. Endocrinol. Diabetes 132, 608β613 (2024).
Hammer, G. D. & Basham, K. J. Stem cell function and plasticity in the normal physiology of the adrenal cortex. Mol. Cell. Endocrinol. 519, 111043 (2021).
Guasti, L., Paul, A., Laufer, E. & King, P. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex. Mol. Cell. Endocrinol. 336, 117β122 (2011).
Neirijnck, Y. et al. Single-cell transcriptomic profiling redefines the origin and specification of early adrenogonadal progenitors. Cell Rep. 42, 112191 (2023).
Pivovarova, O., Nikiforova, V. J., Pfeiffer, A. F. H. & Rudovich, N. The influence of genetic variations in HHEX gene on insulin metabolism in the German MESYBEPO cohort. Diabetes Metab. Res. Rev. 25, 156β162 (2009).
Staiger, H. et al. A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: results from the EUGENE2 study. Diabetes 57, 514β517 (2008).
Pascoe, L. et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 56, 3101β3104 (2007).
Grarup, N. et al. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 danish subjects: validation and extension of genome-wide association studies. Diabetes 56, 3105β3111 (2007).
Liu, S. et al. Genetic variants at 10q23.33 are associated with plasma lipid levels in a Chinese population. J. Biomed. Res. 28, 53β58 (2014).
Dumontet, T. & Martinez, A. Adrenal androgens, adrenarche, and zona reticularis: a human affair? Mol. Cell. Endocrinol. 528, 111239 (2021).
Kraemer, F. B. et al. Adrenal neutral cholesteryl ester hydrolase: identification, subcellular distribution, and sex differences. Endocrinology 143, 801β806 (2002).
Li, H. et al. Hormone-sensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 143, 3333β3340 (2002).
Al, E. M. et al. Wolmanβs disease: the king faisal specialist hospital and research centre experience. Ann. Saudi Med. 18, 120β124 (1998).
Perry, R. et al. Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine Hospital, Montreal. J. Clin. Endocrinol. Metab. 90, 3243β3250 (2005).
Menon, J. et al. Wolmanβs disease: a rare cause of infantile cholestasis and cirrhosis. J. Pediatr. Genet. 11, 132β134 (2020).
Foladi, N. & Aien, M. T. CT features of Wolman disease (lysosomal acid lipase enzyme deficiency) β A case report. Radiol. Case Rep. 16, 2857β2861 (2021).
Sen, D., Satija, L., Saxena, S., Rastogi, V. & Singh, M. A rare constellation of imaging findings in Wolman disease. Med. J. Armed Forces India 71, S448βS451 (2015).
Fulcher, A. S., Das Narla, L. & Hingsbergen, E. A. Pediatric case of the day. Wolman disease (primary familial xanthomatosis with involvement and calcification of the adrenal glands). RadioGraphics 18, 533β535 (1998).
Wolman, M., Sterk, V. V., Gatt, S. & Frenkel, M. Primary familial xanthomatosis with involvement and calcification of the adrenals. Report of two more cases in siblings of a previously described infant. Pediatrics 28, 742β757 (1961).
Abramov, A., Schorr, S. & Wolman, M. Generalized xanthomatosis with calcified adrenals. AMA J. Dis. Child. 91, 282β286 (1956).
Low, G., Irwin, G. J., MacPhee, G. B. & Robinson, P. H. Characteristic imaging findings in Wolmanβs disease. Clin. Radiol. Extra 59, 106β108 (2004).
Schaub, J. et al. Wolmanβs disease: clinical, biochemical and ultrastructural studies in an unusual case without striking adrenal calcification. Eur. J. Pediatr. 135, 45β53 (1980).
Zhang, S. et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 13, 1β11 (2022).
Gao, F. et al. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J. Cell Biol. 217, 2103β2119 (2018).
Ma, Y. et al. Lipophagy contributes to testosterone biosynthesis in male rat leydig cells. Endocrinology 159, 1119β1129 (2018).
Esmaeilian, Y. et al. Autophagy regulates sex steroid hormone synthesis through lysosomal degradation of lipid droplets in human ovary and testis. Cell Death Dis. 14, 1β13 (2023).
Berruti, A. et al. Prognostic role of overt hypercortisolism in completely operated patients with adrenocortical cancer. Eur. Urol. 65, 832β838 (2014).
[Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prognostic%20role%20of%20overt%20hypercortisolism%20i