Model-agnostic linear-memory online learning in spiking neural networks
nature.com·2d
🔢BitNet Inference
Preview
Report Post

Abstract

Spiking neural networks (SNNs) offer a promising paradigm for modeling brain dynamics and developing neuromorphic intelligence, yet an online learning system capable of training rich spiking dynamics over long horizons with low memory footprints has been missing. Existing online approaches either incur quadratic memory growth, sacrifice biological fidelity through oversimplified models, or lack end-to-end automated tooling. Here, we introduce BrainTrace, a model-agnostic, linear-memory, and automated online learning system for spiking neural networks. BrainTrace standardizes model specification to encompass diverse neuronal and synaptic dynamics; implements a linear-memory online learning rule by exploiting intrinsic properties of spiking dynamics; and provides a compiler…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help