Editor’s summary
Being able to adopt a knowledgeable conspecific’s perspective is highly adaptive. Likely for this reason, emotional contagion, or the spread of emotion from one individual to another, is widely distributed among vertebrates. Such an ability, however, would also be adaptive in nonvertebrates, especially those that are social. Whether insect brains are capable of such coordination has been unknown. Romero-González et al. looked at this behavior in bumble bees, whose tiny, but seemingly mighty, brains have already been shown capable of many unexpected cognitive feats. They found that a demonstrator’s positive attitude toward the potential for a reward was readily picked up by an observer. —Sacha Vignieri
Abstract
Affective contagion, a core component of empa…
Editor’s summary
Being able to adopt a knowledgeable conspecific’s perspective is highly adaptive. Likely for this reason, emotional contagion, or the spread of emotion from one individual to another, is widely distributed among vertebrates. Such an ability, however, would also be adaptive in nonvertebrates, especially those that are social. Whether insect brains are capable of such coordination has been unknown. Romero-González et al. looked at this behavior in bumble bees, whose tiny, but seemingly mighty, brains have already been shown capable of many unexpected cognitive feats. They found that a demonstrator’s positive attitude toward the potential for a reward was readily picked up by an observer. —Sacha Vignieri
Abstract
Affective contagion, a core component of empathy, has been widely characterized in social vertebrates but its existence in any invertebrate is unknown. Using a cognitive bias paradigm we demonstrate positive affective contagion in bumble bees. After being trained on colored flowers with different reinforcements, bees that interacted with a conspecific in a positive affective state were quicker and more likely than controls to land on ambiguous colored flowers, indicating the transfer of a positive judgment bias between bees. Additional observations and experiments showed that affect could be transmitted between bees without physical contact, i.e., through visual modality alone. Our findings suggest that affective contagion may be an evolutionarily widespread mechanism present in both social vertebrates and social insects.
Access the full article
View all access options to continue reading this article.
Supplementary Materials
The PDF file includes:
Materials and Methods
Supplementary Text
Figs. S1 to S3
Table S1
- Download
- 2.26 MB
Other Supplementary Material for this manuscript includes the following:
MDAR Reproducibility Checklist
- Download
- 583.62 KB
References and Notes
1
F. B. M. de Waal, Putting the altruism back into altruism: The evolution of empathy. Annu. Rev. Psychol. 59, 279–300 (2008).
2
S. D. Preston, F. B. M. de Waal, Empathy: Its ultimate and proximate bases. Behav. Brain Sci. 25, 1–20, discussion 20–71 (2002).
3
N. Eisenberg, N. D. Eggum, L. Di Giunta, Empathy-related Responding: Associations with Prosocial Behavior, Aggression, and Intergroup Relations. Soc. Issues Policy Rev. 4, 143–180 (2010).
4
J. Decety, I. B.-A. Bartal, F. Uzefovsky, A. Knafo-Noam, Empathy as a driver of prosocial behaviour: Highly conserved neurobehavioural mechanisms across species. Philos. Trans. R. Soc. B 371, 20150077 (2016).
5
M. Mendl, E. S. Paul, Animal affect and decision-making. Neurosci. Biobehav. Rev. 112, 144–163 (2020).
6
F. B. M. de Waal, S. D. Preston, Mammalian empathy: Behavioural manifestations and neural basis. Nat. Rev. Neurosci. 18, 498–509 (2017).
7
C. Keysers, E. Knapska, M. A. Moita, V. Gazzola, Emotional contagion and prosocial behavior in rodents. Trends Cogn. Sci. 26, 688–706 (2022).
8
R. Schwing, X. J. Nelson, A. Wein, S. Parsons, Positive emotional contagion in a New Zealand parrot. Curr. Biol. 27, R213–R214 (2017).
9
J. E. C. Adriaense, J. S. Martin, M. Schiestl, C. Lamm, T. Bugnyar, Negative emotional contagion and cognitive bias in common ravens (Corvus corax). Proc. Natl. Acad. Sci. U.S.A. 116, 11547–11552 (2019).
10
I. Akinrinade, K. Kareklas, M. C. Teles, T. K. Reis, M. Gliksberg, G. Petri, G. Levkowitz, R. F. Oliveira, Evolutionarily conserved role of oxytocin in social fear contagion in zebrafish. Science 379, 1232–1237 (2023).
11
A. Pérez-Manrique, A. Gomila, Emotional contagion in nonhuman animals: A review. Wiley Interdiscip. Rev. Cogn. Sci. 13, e1560 (2022).
12
J. J. M. Massen, A. C. Gallup, Why contagious yawning does not (yet) equate to empathy. Neurosci. Biobehav. Rev. 80, 573–585 (2017).
13
J. E. C. Adriaense, S. E. Koski, L. Huber, C. Lamm, Challenges in the comparative study of empathy and related phenomena in animals. Neurosci. Biobehav. Rev. 112, 62–82 (2020).
14
E. J. Harding, E. S. Paul, M. Mendl, Animal behaviour: Cognitive bias and affective state. Nature 427, 312–312 (2004).
15
M. Mendl, O. H. P. Burman, R. M. A. Parker, E. S. Paul, Cognitive bias as an indicator of animal emotion and welfare: Emerging evidence and underlying mechanisms. Appl. Anim. Behav. Sci. 118, 161–181 (2009).
16
M. Lagisz, J. Zidar, S. Nakagawa, V. Neville, E. Sorato, E. S. Paul, M. Bateson, M. Mendl, H. Løvlie, Optimism, pessimism and judgement bias in animals: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 118, 3–17 (2020).
17
Y. Saito, S. Yuki, Y. Seki, H. Kagawa, K. Okanoya, Cognitive bias in rats evoked by ultrasonic vocalizations suggests emotional contagion. Behav. Processes 132, 5–11 (2016).
18
O. J. Loukola, C. Solvi, L. Coscos, L. Chittka, Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).
19
S. Alem, C. J. Perry, X. Zhu, O. J. Loukola, T. Ingraham, E. Søvik, L. Chittka, Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLOS Biol. 14, e1002564 (2016).
20
O. J. Loukola, A. Antinoja, K. Mäkelä, J. Arppi, F. Peng, C. Solvi, Evidence for socially influenced and potentially actively coordinated cooperation by bumblebees. Proc. Biol. Sci. 291, 20240055 (2024).
21
D. J. Anderson, R. Adolphs, A framework for studying emotions across species. Cell 157, 187–200 (2014).
22
M. Bateson, S. Desire, S. E. Gartside, G. A. Wright, Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 21, 1070–1073 (2011).
23
H. Schlüns, H. Welling, J. R. Federici, L. Lewejohann, The glass is not yet half empty: Agitation but not Varroa treatment causes cognitive bias in honey bees. Anim. Cogn. 20, 233–241 (2017).
24
C. Solvi, L. Baciadonna, L. Chittka, Unexpected rewards induce dopamine-dependent positive emotion-like state changes in bumblebees. Science 353, 1529–1531 (2016).
25
O. Procenko, J. C. A. Read, V. Nityananda, Physically stressed bees expect less reward in an active choice judgement bias test. Proc. Biol. Sci. 291, 20240512 (2024).
26
A. Deakin, M. Mendl, W. J. Browne, E. S. Paul, J. J. L. Hodge, State-dependent judgement bias in Drosophila: Evidence for evolutionarily primitive affective processes. Biol. Lett. 14, 20170779 (2018).
27
J. Hernandez-Lallement, P. Gómez-Sotres, M. Carrillo, Towards a unified theory of emotional contagion in rodents-A meta-analysis. Neurosci. Biobehav. Rev. 132, 1229–1248 (2022).
28
A. Dornhaus, A. Brockmann, L. Chittka, Bumble bees alert to food with pheromone from tergal gland. J. Comp. Physiol. A 189, 47–51 (2003).
29
C. Heyes, Empathy is not in our genes. Neurosci. Biobehav. Rev. 95, 499–507 (2018).
30
J. Lauer, M. Zhou, S. Ye, W. Menegas, S. Schneider, T. Nath, M. M. Rahman, V. Di Santo, D. Soberanes, G. Feng, V. N. Murthy, G. Lauder, C. Dulac, M. W. Mathis, A. Mathis, Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).
31
T. D. Pereira, N. Tabris, A. Matsliah, D. M. Turner, J. Li, S. Ravindranath, E. S. Papadoyannis, E. Normand, D. S. Deutsch, Z. Y. Wang, G. C. McKenzie-Smith, C. C. Mitelut, M. D. Castro, J. D’Uva, M. Kislin, D. H. Sanes, S. D. Kocher, S. S.-H. Wang, A. L. Falkner, J. W. Shaevitz, M. Murthy, SLEAP: A deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).
32
C. Keysers, V. Gazzola, Emotional contagion: Improving survival by preparing for socially sensed threats. Curr. Biol. 31, R728–R730 (2021).
33
F. Michon, J. Packheiser, V. Gazzola, C. Keysers, Sharing Positive Affective States Amongst Rodents. Affect. Sci. 4, 475–479 (2023).
34
B. D. Worden, D. R. Papaj, Flower choice copying in bumblebees. Biol. Lett. 1, 504–507 (2005).
35
E. Leadbeater, L. Chittka, A new mode of information transfer in foraging bumblebees? Curr. Biol. 15, R447–R448 (2005).
36
37
W. M. S. Russell, R. L. Burch, The Principles of Humane Experimental Technique, vol. 1 (Methuen, 1959).
38
L. Gygax, The A to Z of statistics for testing cognitive judgement bias. Anim. Behav. 95, 59–69 (2014).
39
M. E. Young, M. R. Hoane, Mixed effects modeling of Morris water maze data revisited: Bayesian censored regression. Learn. Behav. 49, 307–320 (2021).
40
P.-C. Bürkner, brms : An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 80, 1–28 (2017).
41
J. Gabry, D. Simpson, A. Vehtari, M. Betancourt, A. Gelman, Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).
42
Y. Yao, A. Vehtari, D. Simpson, A. Gelman, Using Stacking to Average Bayesian Predictive Distributions. Bayesian Anal. 13, 917–1003 (2018).
43
D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).
44
45