Python Linter, Code Formatter, Fast Tooling, Rust Implementation

Real-World Java • Victor Grazi, Jeanne Boyarsky & Barry Burd
youtube.comĀ·1d
šŸ“ØKafka
Flag this post
Send mail with Kubernetes
github.comĀ·16hĀ·
Discuss: r/devops
šŸ“ØKafka
Flag this post
Stop Copy-Pasting Between Excel and Code: Automate Your Data Workflows with GridScript
dev.toĀ·2dĀ·
Discuss: DEV
šŸŽÆContext Managers
Flag this post
Hard-Coded Test Data Almost Killed Our Test Suite (Here's How We Fixed It)
dev.toĀ·1dĀ·
Discuss: DEV
🧪pytest
Flag this post
Best Free Tools for Remote Developers Working Across Time Zones (2025)
dev.toĀ·2dĀ·
Discuss: DEV
šŸ¤–GitHub Actions
Flag this post
I Just Did 6 Weeks of Principal-Level Engineering in 3 Days
dev.toĀ·1dĀ·
Discuss: DEV
šŸ”§Dagster
Flag this post
Categorical Emotions or Appraisals - Which Emotion Model Explains Argument Convincingness Better?
arxiv.orgĀ·1d
šŸ»ā€ā„ļøPolars
Flag this post
Walking the Tightrope of LLMs for Software Development: A Practitioners' Perspective
arxiv.orgĀ·1d
šŸ—ļøDesign Patterns
Flag this post
Facade Pattern — Catalog of Enterprise Application Architecture Patterns šŸ¢
dev.toĀ·5dĀ·
Discuss: DEV
šŸ—ļøDesign Patterns
Flag this post
How AI Fails: An Interactive Pedagogical Tool for Demonstrating Dialectal Bias in Automated Toxicity Models
arxiv.orgĀ·1d
āœ…Pydantic
Flag this post
Tech With Tim: 7 Python Anti Patterns to Avoid
dev.toĀ·2dĀ·
Discuss: DEV
šŸ”Python Linting
Flag this post
Tech With Tim: Python for Machine Learning - Complete Roadmap!
vibe.forem.comĀ·23hĀ·
Discuss: DEV
šŸ““Jupyter Notebooks
Flag this post
Krish Naik: Stop Fighting with Kubernetes! Scale Python to 1000s of Machines with Coiled
dev.toĀ·21hĀ·
Discuss: DEV
šŸ“ŠParquet
Flag this post
Krish Naik: Stop Fighting with Kubernetes! Scale Python to 1000s of Machines with Coiled
dev.toĀ·9hĀ·
Discuss: DEV
šŸ“ŠParquet
Flag this post
Lookahead Unmasking Elicits Accurate Decoding in Diffusion Language Models
arxiv.orgĀ·1d
šŸ”Fuzzy Finders
Flag this post
Optimizing Diversity and Quality through Base-Aligned Model Collaboration
arxiv.orgĀ·1d
āš™ļøGenerators
Flag this post
TimeSense:Making Large Language Models Proficient in Time-Series Analysis
arxiv.orgĀ·1d
šŸŽ€Decorators
Flag this post