Author(s): Mohamadreza Fazel, Kristin S. Grussmayer, Boris Ferdman, Aleksandra Radenovic, Yoav Shechtman, Jörg Enderlein, and Steve Pressé For centuries, human fascination with the living world motivated the development of tools for visualizing life’s events at the spatiotemporal scales beyond our visual range. While all optical microscopes use light to probe the object of interest, fluorescence microscopes can discern between the object and background at the molecular scale. At this scale, the stochastic properties of light are fundamental to interpreting fluorescence microscopy data. Accordingly quantitative methods that enable such interpretation necessitate stochastic perspective and the use of statistical concepts. The physical-optical principles governing the formation of fluorescent…
Author(s): Mohamadreza Fazel, Kristin S. Grussmayer, Boris Ferdman, Aleksandra Radenovic, Yoav Shechtman, Jörg Enderlein, and Steve Pressé For centuries, human fascination with the living world motivated the development of tools for visualizing life’s events at the spatiotemporal scales beyond our visual range. While all optical microscopes use light to probe the object of interest, fluorescence microscopes can discern between the object and background at the molecular scale. At this scale, the stochastic properties of light are fundamental to interpreting fluorescence microscopy data. Accordingly quantitative methods that enable such interpretation necessitate stochastic perspective and the use of statistical concepts. The physical-optical principles governing the formation of fluorescent images and modeling tools interpreting these images while accounting for the stochasticity of light and measurements are reviewed. [Rev. Mod. Phys. 96, 025003] Published Wed Jun 05, 2024