Abstract

We study lattice spin systems and analyze the evolution of Gaussian concentration bounds (GCB) under the action of probabilistic cellular automata (PCA), which serve as discrete-time analogues of Markovian spin-flip dynamics. We establish the conservation of GCB and, in the high-noise regime, demonstrate that GCB holds for the unique stationary measure. Additionally, we prove the equivalence of GCB for the space-time measure and its spatial marginals in the case of contractive probabilistic cellular automata. Furthermore, we explore the relationship between (non)-uniqueness and GCB in the context of space-time Gibbs measures for PCA and illustrate these results with examples.

Access this article

Subscribe and save

Springer+

from $39.99 /Month

  • Starting …

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help