Why your LLM bill is exploding — and how semantic caching can cut it by 73%
venturebeat.com·1d
📊Vectorized Query Execution
Preview
Report Post

Our LLM API bill was growing 30% month-over-month. Traffic was increasing, but not that fast. When I analyzed our query logs, I found the real problem: Users ask the same questions in different ways.

"What's your return policy?," "How do I return something?", and "Can I get a refund?" were all hitting our LLM separately, generating nearly identical responses, each incurring full API costs.

Exact-match caching, the obvious first solution, captured only 18% of these redundant calls. The same semantic question, phrased differently, bypassed the cache entirely.

So, I implemented semantic caching based on what queries mean, not how they're worded. After implementing it, our cache hit rate increased to 67%, reducing LLM API costs by 73...

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help