OCaml 5.4 Release: New Features, Fixes, and More
tarides.comยท16hยท
๐Ÿ”—Functional Compilers
Gleam Programming Language Tour
tour.gleam.runยท14hยท
Discuss: Hacker News
๐Ÿฆ€Rust Macros
Make Dictation Your Prompting Superpower
elite-ai-assisted-coding.devยท1hยท
Discuss: Hacker News
๐ŸŒณIncremental Parsing
Teaching Models to Decide When to Retrieve: Adaptive RAG, Part 4
blog.reachsumit.comยท5dยท
Discuss: Hacker News
๐Ÿง Learned Indexing
The Porcelain to Come
stackdiver.comยท1dยท
Discuss: Hacker News
๐Ÿ”ฒCellular Automata
Three Solutions to Nondeterminism in AI
blog.hellas.aiยท3dยท
Discuss: Hacker News
๐ŸŽฏPerformance Proofs
6 AI Models vs. 3 Advanced Security Vulnerabilities
codelens.aiยท2hยท
Discuss: r/programming
๐Ÿ Homelab Pentesting
Built a โ€œcode-first + visualโ€ ETL/ELT Pipeline in Go โ€” feedback wanted from data folks
reddit.comยท6hยท
Discuss: r/golang
๐Ÿ’งLiquidhaskell
Paper2Agent: Research Papers as Interactive AI Agents
huggingface.coยท1dยท
Discuss: Hacker News
๐Ÿค–AI Curation
Beyond Transformers: Can MLPs Unlock the Potential of In-Context Learning?
dev.toยท4dยท
Discuss: DEV
๐ŸŒณContext free grammars
H1B-KV: Hybrid One-Bit Caches for Memory-Efficient Large Language Model Inference
arxiv.orgยท3d
๐Ÿ’จCache Optimization
MARC: Memory-Augmented RL Token Compression for Efficient Video Understanding
arxiv.orgยท1d
๐Ÿง Learned Codecs
Active Confusion Expression in Large Language Models: Leveraging World Models toward Better Social Reasoning
arxiv.orgยท1d
๐ŸงฎProlog Parsing
To Sink or Not to Sink: Visual Information Pathways in Large Vision-Language Models
arxiv.orgยท1d
๐Ÿ“ŠLearned Metrics
SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference
arxiv.orgยท1dยท
Discuss: r/LLM
๐Ÿ’ปLocal LLMs
Accelerated Cold Tolerance Breeding via Multi-Modal Phenotyping and Genome-Wide Predictive Modeling
dev.toยท2hยท
Discuss: DEV
โ˜•Precision Brewing
PoLi-RL: A Point-to-List Reinforcement Learning Framework for Conditional Semantic Textual Similarity
arxiv.orgยท4d
๐Ÿ—‚๏ธVector Search
Responsible Vibe Coding
dev.toยท8hยท
Discuss: DEV
๐Ÿ“Code Metrics
Krish Naik: Complete RAG Crash Course With Langchain In 2 Hours
dev.toยท1dยท
Discuss: DEV
๐Ÿ“ŠMulti-vector RAG