ML-assisted Data Structures, Neural B-trees, Database Optimization, Adaptive Structures

Types of Metadata Schemas
accidental-taxonomist.blogspot.com·1d·
🏷️Metadata Standards
Flag this post
Your AI Models Aren’t Slow, but Your Data Pipeline Might Be
thenewstack.io·22h
🌊Streaming Systems
Flag this post
Show HN: Hot or Slop – Visual Turing test on how well humans detect AI images
hotorslop.com·1d·
Discuss: Hacker News
📊Learned Metrics
Flag this post
LikePhys: Evaluating Intuitive Physics Understanding in Video Diffusion Modelsvia Likelihood Preference
dev.to·7h·
Discuss: DEV
📊Learned Metrics
Flag this post
Reward Collapse in Aligning Large Language Models
arxiv.org·1d
🔗Monadic Parsing
Flag this post
Enhanced Damping Factor Prediction via Multi-Scale Neural Network Ensemble
dev.to·4h·
Discuss: DEV
📊Quantization
Flag this post
Selective Learning for Deep Time Series Forecasting
arxiv.org·2d
🎛️Feed Filtering
Flag this post
InputDSA: Demixing then Comparing Recurrent and Externally Driven Dynamics
arxiv.org·1d
🧮Kolmogorov Complexity
Flag this post
Quantum-Leaping Collateral: AI-Powered Optimization for the Future of Finance
dev.to·1d·
Discuss: DEV
🕸️Tensor Networks
Flag this post
Accurate and Scalable Multimodal Pathology Retrieval via Attentive Vision-Language Alignment
arxiv.org·4d
🧮Vector Embeddings
Flag this post
Ideology-Based LLMs for Content Moderation
arxiv.org·1d
📰Content Curation
Flag this post
PORTool: Tool-Use LLM Training with Rewarded Tree
arxiv.org·1d
💻Programming languages
Flag this post
Hyperdimensional Semantic Graph Augmentation for Automated Scientific Literature Synthesis
dev.to·1d·
Discuss: DEV
🧭Content Discovery
Flag this post
Central Submonads and Notions of Computation: Soundness, Completeness and Internal Languages
arxiv.org·1d
🧮Algebraic Archives
Flag this post
Statistical physics of deep learning: Optimal learning of a multi-layer perceptron near interpolation
arxiv.org·3d
🧠Machine Learning
Flag this post
Hyper-Dimensional Bayesian Optimization for Enhanced Statistical Process Control
dev.to·3h·
Discuss: DEV
⚙️Modern Assembly
Flag this post
Do Not Step Into the Same River Twice: Learning to Reason from Trial and Error
arxiv.org·1d
💻Local LLMs
Flag this post
**Caution: Synthetic Data Oversight - Overfitting to Noise**
dev.to·19h·
Discuss: DEV
🔍Vector Forensics
Flag this post