Announcing coreboot 25.09 release
blogs.coreboot.org·12h
🔌Operating system internals
Getting a Hypergraph of Functions to a Browser
systeminit.com·1d·
Discuss: Hacker News
📐E-graphs
Gleam Programming Language Tour
tour.gleam.run·3h·
Discuss: Hacker News
🦀Rust Macros
SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference
arxiv.org·1d·
Discuss: r/LLM
💻Local LLMs
We built a CUDA emulator that profiles GPU code with zero hardware
rightnowai.co·4d·
Discuss: Hacker News
🎯Emulator Accuracy
The Library Method: Understanding @cache
dev.to·1d·
Discuss: DEV
Cache Theory
Hardware Vulnerability Allows Attackers to Hack AI Training Data – NC State News
news.ncsu.edu·16h·
Discuss: Hacker News
🔐RISC-V Cryptography
Statistical Analysis Using NumPy and SciPy: A Practical Guide
dev.to·3d·
Discuss: DEV
📐Linear Algebra
Randomized Quantum Singular Value Transformation
arxiv.org·2d
⚛️Quantum Circuits
RND1: Simple, Scalable AR-to-Diffusion Conversion
radicalnumerics.ai·1d·
Discuss: Hacker News
💻Local LLMs
Get RICH or Die Scaling: Profitably Trading Inference Compute for Robustness
arxiv.org·2d
🧠Intelligence Compression
Krish Naik: Complete RAG Crash Course With Langchain In 2 Hours
dev.to·2h·
Discuss: DEV
📊Multi-vector RAG
Yes, Python is Slow, but it doesn't matter for AI SaaS
fastro.ai·2d·
Discuss: Hacker News
🌊Stream Processing
The Hidden Oracle Inside Your AI: Unveiling Data Density with Latent Space Magic by Arvind Sundararajan
dev.to·2d·
Discuss: DEV
🧠Machine Learning
Three Solutions to Nondeterminism in AI
blog.hellas.ai·3d·
Discuss: Hacker News
🎯Performance Proofs
Automated Parameter Calibration in Physics-Based Robot Simulation via Bayesian Optimization
dev.to·1d·
Discuss: DEV
Incremental Computation
MARC: Memory-Augmented RL Token Compression for Efficient Video Understanding
arxiv.org·1d
🧠Learned Codecs
Implicit Models: Expressive Power Scales with Test-Time Compute
arxiv.org·4d
🎯Performance Proofs
[P] Lossless compression for 1D CNNs
reddit.com·1d·
📊Quantization
SliceFine: The Universal Winning-Slice Hypothesis for Pretrained Networks
arxiv.org·1d
🧠Neural Codecs