Embedding Similarity, High-dimensional Indexing, Semantic Retrieval, ML Infrastructure

Unlocking the Power of Vector Databases and AI Search: A Comprehensive Guide 🚀
dev.to·14h·
Discuss: DEV
🗂️Vector Databases
Deep Lookup Network
arxiv.org·2d
🧮Vector Embeddings
RAG Explained: Understanding Embeddings, Similarity, and Retrieval
towardsdatascience.com·2d
📊Multi-vector RAG
Building tenets: Intelligent context aggregation for AI pair programming
jddunn.github.io·2d·
Discuss: Hacker News
🌀Brotli Internals
Enhanced Semantic Alignment Through Contrastive Hypervector Triangulation (CHT) for Cross-Modal Retrieval
dev.to·1d·
Discuss: DEV
📊Learned Metrics
Distillation Can Make AI Models Smaller and Cheaper
wired.com·6h
📊Quantization
Evaluating Large Language Models for Cross-Lingual Retrieval
arxiv.org·1d
🎯Retrieval Systems
Learning languages with the help of algorithms
johndcook.com·2d·
Discuss: Hacker News
🧮Kolmogorov Complexity
2025-09-17: Classic Machine Learning Models and XAI Methods
ws-dl.blogspot.com·2d·
🧠Machine Learning
Structure-Preserving Margin Distribution Learning for High-Order Tensor Data with Low-Rank Decomposition
arxiv.org·1d
🧠Machine Learning
Music4All A+A: A Multimodal Dataset for Music Information Retrieval Tasks
arxiv.org·1d
🎼Computational Musicology
Deep researcher with test-time diffusion
research.google·20h·
Discuss: Hacker News
🔍Information Retrieval
Mastering Retrieval-Augmented Generation: Best Practices for Building Robust RAG Systems
dev.to·20h·
Discuss: DEV
🌀Brotli Internals
Culture Is High Dimensional
overcomingbias.com·2h·
Discuss: Hacker News
🌍Cultural Algorithms
Mixture of Multicenter Experts in Multimodal AI for Debiased Radiotherapy Target Delineation
arxiv.org·1d
🧠Machine Learning
LLM-Deflate: Extracting LLMs into Datasets
scalarlm.com·10h·
Discuss: Hacker News
💻Local LLMs
Language Models Pack Billions of Concepts into 12,000 Dimensions
nickyoder.com·5d·
🧮Kolmogorov Complexity