Learn how to build AI agents that can use tools, make decisions, and take actions - all running locally on your machine!
📋 Structure:
- Introduction - What agentic AI is with a clear example
- Background - Explains Ollama, tool calling, and MCP from scratch
- Architecture - Visual diagram showing how everything connects
- Ollama Setup - Complete installation guide with verification steps
- Model Guide - Tables showing which models support tools (✅) and which don’t (❌)
- Project Setup - Virtual environment and dependencies
- Building the MCP Server - Step-by-step with code explanations
- Building the Client - Detailed walkthrough with annotations
- Running the System - Multi-terminal setup guide
- How It Works - Deep dive into the …
Learn how to build AI agents that can use tools, make decisions, and take actions - all running locally on your machine!
📋 Structure:
- Introduction - What agentic AI is with a clear example
- Background - Explains Ollama, tool calling, and MCP from scratch
- Architecture - Visual diagram showing how everything connects
- Ollama Setup - Complete installation guide with verification steps
- Model Guide - Tables showing which models support tools (✅) and which don’t (❌)
- Project Setup - Virtual environment and dependencies
- Building the MCP Server - Step-by-step with code explanations
- Building the Client - Detailed walkthrough with annotations
- Running the System - Multi-terminal setup guide
- How It Works - Deep dive into the request flow with diagrams
- Customization - Examples of adding new tools
- Troubleshooting - 5 common problems with solutions
- 6 Real Project Ideas - Each with tool implementations, examples, and tech stack
🎯 Project Ideas Included:
- Email Assistant - Manage emails with AI
- Personal Knowledge Base - Smart note-taking system
- Finance Manager - Track expenses and budgets
- Smart Home Controller - Control IoT devices
- Data Analysis Assistant - Analyze datasets and create reports
- Study Assistant - Flashcards and quiz system
Each project includes actual code snippets, example usage, and recommended tech stack!
🎯 What We’re Building
By the end of this tutorial, you’ll have an AI agent that can:
- Understand natural language requests
- Decide which tools to use
- Execute functions automatically
- Return intelligent responses
Example:
You: "Hey, greet Alice and then calculate 150 + 75"
AI: *Thinking... I need to use the greet tool and the add tool*
*Calls greet("Alice") → "Hello, Alice! Welcome!"*
*Calls add(150, 75) → 225*
AI: "Hello Alice! Welcome! The sum of 150 and 75 is 225."
All of this runs locally on your machine - no API keys, no cloud costs!
📚 Background: What You Need to Know
What is Ollama?
Ollama is like Docker, but for AI models. It lets you:
- Download AI models with one command
- Run them locally on your laptop
- Use them without internet or API keys
Think of it as "AI models in a box" - simple, fast, and private.
What is Tool Calling?
Tool calling (also called function calling) is when an AI model can:
- Recognize it needs to use a tool
- Choose the right tool for the job
- Provide the correct parameters
- Interpret the results
Example Without Tool Calling:
You: "What's 1,247 × 893?"
AI: "Approximately 1,113,571" ❌ (Could be wrong!)
Example WITH Tool Calling:
You: "What's 1,247 × 893?"
AI: *Uses calculator tool*
AI: "1,113,571" ✅ (Always correct!)
What is MCP (Model Context Protocol)?
MCP is a standardized way for AI models to connect with tools and data sources. Think of it as USB-C for AI:
Without MCP (Chaos):
AI Model A → Custom API → Tool 1
AI Model B → Different API → Tool 1
AI Model C → Another API → Tool 1
With MCP (Standardized):
AI Model A ─┐
AI Model B ─┼→ MCP → Tool 1
AI Model C ─┘
FastMCP is a Python library that makes implementing MCP servers super easy.
🏗️ Architecture Overview
Here’s how all the pieces fit together:
┌─────────────────────────────────────────────────────────────┐
│ YOUR COMPUTER │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ │ │ │ │ │ │
│ │ Ollama │◄──►│ Python │◄──►│ FastMCP │ │
│ │ (AI Brain) │ │ Client │ │ Server │ │
│ │ │ │ (Orchestrator)│ │ (Tools) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │
└─────────────────────────────────────────────────────────────┘
The Flow:
- You ask a question
- Python Client sends it to Ollama with available tools
- Ollama decides if it needs tools
- Client executes tools via FastMCP
- Client sends results back to Ollama
- Ollama generates final answer
- You get the response
🚀 Part 1: Installing Ollama
Step 1: Download and Install
For Linux:
curl -fsSL https://ollama.ai/install.sh | sh
For macOS:
brew install ollama
For Windows: Download from: https://ollama.ai/download
Step 2: Verify Installation
ollama --version
You should see something like: ollama version 0.1.x
Step 3: Start Ollama Server
ollama serve
Keep this terminal open! Ollama needs to be running in the background.
Step 4: Pull a Model
Open a new terminal and pull a model that supports tool calling:
ollama pull llama3.2
This downloads about 2GB - grab a coffee! ☕
Step 5: Test Your Model
ollama run llama3.2
Try chatting with it:
>>> Hello! Who are you?
I'm Llama 3.2, an AI assistant...
>>> /bye
✅ Checkpoint: You now have a working local AI model!
🔍 Understanding Ollama Models
Not all models support tool calling! Here’s what you need to know:
✅ Models That Support Tools
| Model | Size | Speed | Best For |
|---|---|---|---|
llama3.2 | 3GB | Fast | Recommended for this tutorial |
llama3.1 | 5GB | Medium | More accurate responses |
mistral | 4GB | Fast | Good general purpose |
qwen2.5 | 4GB | Fast | Multilingual support |
Pull any of these:
ollama pull llama3.2 # Start with this one!
ollama pull llama3.1 # If you want more power
ollama pull mistral # Alternative option
❌ Models That DON’T Support Tools
| Model | Why Not? |
|---|---|
codellama | Built only for code generation |
llama2 | Older architecture, no tool support |
phi | Too small for complex tool reasoning |
What happens if you use them?
Error: does not support tools (status code: 400)
Checking Running Models
# See what's currently loaded
ollama list
# Stop all models to free memory
ollama stop llama3.2
🛠️ Part 2: Setting Up the Project
Step 1: Create Project Directory
mkdir mcp-ollama-tutorial
cd mcp-ollama-tutorial
Step 2: Create Virtual Environment
# Create virtual environment
python -m venv myenv
# Activate it
source myenv/bin/activate # Linux/Mac
# OR
myenv\Scripts\activate # Windows
# You should see (myenv) in your prompt
Step 3: Install Dependencies
pip install fastmcp ollama requests
What we’re installing:
fastmcp- For creating MCP tool serversollama- Python client for Ollamarequests- For HTTP communication
Step 4: Verify Installation
python -c "import fastmcp; import ollama; print('✅ All packages installed!')"
🔧 Part 3: Creating the MCP Server
The MCP server is where we define our tools. Let’s create mcp_server.py:
# mcp_server.py
from fastmcp import FastMCP
# Create the MCP server instance
mcp = FastMCP("My First MCP Server")
# Define Tool 1: Add two numbers
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers together"""
return a + b
# Define Tool 2: Greet someone
@mcp.tool()
def greet(name: str) -> str:
"""Greet someone by name"""
return f"Hello, {name}! Welcome!"
# Define Tool 3: Multiply numbers
@mcp.tool()
def multiply(a: float, b: float) -> float:
"""Multiply two numbers"""
return a * b
# Define Tool 4: Get current time
@mcp.tool()
def get_time() -> str:
"""Get the current time"""
from datetime import datetime
return datetime.now().strftime("%I:%M %p")
if __name__ == "__main__":
# Start the server
mcp.run(transport="sse", port=8080)
Understanding the Code
Line by line breakdown:
from fastmcp import FastMCP
Import the FastMCP library.
mcp = FastMCP("My First MCP Server")
Create a server instance. The name is just for identification.
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers together"""
return a + b
@mcp.tool()- Decorator that registers this function as a toola: int, b: int- Type hints tell the AI what parameters to send"""Add two numbers together"""- Description the AI readsreturn a + b- The actual logic
FastMCP automatically:
- Exposes this function over HTTP
- Generates JSON schema for the AI
- Handles all the communication
Start the Server
python mcp_server.py
You should see:
INFO: Started server process
INFO: Uvicorn running on http://127.0.0.1:8080
✅ Checkpoint: Your tool server is running!
Keep this terminal open. Open a new terminal for the next steps.
🤖 Part 4: Creating the Ollama Client
Now let’s create the client that connects everything. Create client_ollama.py:
# client_ollama.py
import json
import ollama
from fastmcp import Client as MCPClient
import asyncio
import sys
# Configuration
OLLAMA_MODEL = "llama3.2"
MCP_SERVER_URL = "http://127.0.0.1:8080/mcp"
# ------------------------------------------------------------
# Step 1: Discover available tools from MCP server
# ------------------------------------------------------------
async def load_mcp_tools():
"""Connect to MCP server and get list of available tools"""
try:
async with MCPClient(MCP_SERVER_URL) as mcp:
# Ask server: "What tools do you have?"
tools_list = await mcp.list_tools()
# Convert to format Ollama understands
ollama_tools = []
for tool in tools_list:
ollama_tools.append({
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": tool.inputSchema,
},
})
return ollama_tools
except Exception as e:
print(f"❌ ERROR connecting to MCP server: {e}")
print(f"\nMake sure the server is running:")
print(" python mcp_server.py")
sys.exit(1)
# ------------------------------------------------------------
# Step 2: Execute a tool when AI requests it
# ------------------------------------------------------------
async def execute_tool(tool_name: str, arguments: dict):
"""Call a tool on the MCP server with given arguments"""
try:
async with MCPClient(MCP_SERVER_URL) as mcp:
result = await mcp.call_tool(tool_name, arguments)
return result
except Exception as e:
print(f"❌ ERROR executing tool {tool_name}: {e}")
return {"error": str(e)}
# ------------------------------------------------------------
# Step 3: Main conversation loop
# ------------------------------------------------------------
async def main():
print("🔍 Loading MCP tools...")
tools = await load_mcp_tools()
print(f"✅ Loaded {len(tools)} tools:")
for tool in tools:
print(f" - {tool['function']['name']}: {tool['function']['description']}")
print()
# The user's question
user_msg = "Please greet John and then add 150 + 75."
print(f"👤 User: {user_msg}\n")
# Send to Ollama with tools available
try:
response = ollama.chat(
model=OLLAMA_MODEL,
messages=[{"role": "user", "content": user_msg}],
tools=tools, # ← AI now knows these tools exist!
stream=False,
)
except Exception as e:
print(f"❌ ERROR calling Ollama: {e}")
print(f"\nMake sure:")
print(f" 1. Ollama is running (ollama serve)")
print(f" 2. Model is installed (ollama pull {OLLAMA_MODEL})")
sys.exit(1)
# Check: Did AI want to use tools?
if not response.get("message", {}).get("tool_calls"):
print("🤖 AI answered directly (no tools needed):")
print(response["message"]["content"])
return
# Process tool calls
messages = [
{"role": "user", "content": user_msg},
response["message"]
]
for tool_call in response["message"]["tool_calls"]:
tool_name = tool_call["function"]["name"]
args = tool_call["function"]["arguments"]
# Parse if arguments are JSON string
if isinstance(args, str):
args = json.loads(args)
print(f"🔧 Tool requested: {tool_name}")
print(f"📝 Arguments: {args}")
# Execute the tool
tool_result = await execute_tool(tool_name, args)
print(f"✅ Tool result: {tool_result}\n")
# Add tool response to conversation
messages.append({
"role": "tool",
"content": json.dumps(tool_result) if isinstance(tool_result, dict) else str(tool_result),
})
# Send tool results back to AI for final answer
final = ollama.chat(
model=OLLAMA_MODEL,
messages=messages,
)
print("🤖 Final AI response:")
print(final["message"]["content"])
if __name__ == "__main__":
asyncio.run(main())
Understanding the Client Code
The Three-Step Process:
Discovery Phase (load_mcp_tools)
- Connects to MCP server
- Gets list of available tools
- Converts to Ollama’s format
Execution Phase (execute_tool)
- When AI requests a tool
- Client calls MCP server
- Returns result
Conversation Loop (main)
- Send question + tools to Ollama
- If AI wants tools → execute them
- Send results back to AI
- Get final answer
🎬 Part 5: Running the Complete System
Step 1: Start MCP Server (Terminal 1)
cd mcp-ollama-tutorial
source myenv/bin/activate
python mcp_server.py
Wait for: Uvicorn running on http://127.0.0.1:8080
Step 2: Start Ollama (Terminal 2)
ollama serve
Step 3: Run Client (Terminal 3)
cd mcp-ollama-tutorial
source myenv/bin/activate
python client_ollama.py
Expected Output
🔍 Loading MCP tools...
✅ Loaded 4 tools:
- add: Add two numbers together
- greet: Greet someone by name
- multiply: Multiply two numbers
- get_time: Get the current time
👤 User: Please greet John and then add 150 + 75.
🔧 Tool requested: greet
📝 Arguments: {'name': 'John'}
✅ Tool result: Hello, John! Welcome!
🔧 Tool requested: add
📝 Arguments: {'a': 150, 'b': 75}
✅ Tool result: 225
🤖 Final AI response:
Hello, John! Welcome! The sum of 150 and 75 is 225.
🎉 Success! Your AI agent is working!
🔬 Part 6: How It Actually Works
Let’s trace exactly what happens behind the scenes:
Request Flow Diagram
1. User asks question
↓
2. Client gets tools from MCP server
{
"tools": [
{"name": "add", "description": "Add two numbers", ...},
{"name": "greet", "description": "Greet someone", ...}
]
}
↓
3. Client sends to Ollama:
{
"model": "llama3.2",
"messages": [{"role": "user", "content": "Greet John and add 150 + 75"}],
"tools": [...tool definitions...]
}
↓
4. Ollama AI thinks:
"I need to:
1. Use 'greet' tool with name='John'
2. Use 'add' tool with a=150, b=75"
Returns:
{
"tool_calls": [
{"function": {"name": "greet", "arguments": {"name": "John"}}},
{"function": {"name": "add", "arguments": {"a": 150, "b": 75}}}
]
}
↓
5. Client executes each tool via MCP:
MCP Request 1:
POST http://127.0.0.1:8080/mcp/call_tool
{"tool": "greet", "arguments": {"name": "John"}}
Response: "Hello, John! Welcome!"
MCP Request 2:
POST http://127.0.0.1:8080/mcp/call_tool
{"tool": "add", "arguments": {"a": 150, "b": 75}}
Response: 225
↓
6. Client sends results back to Ollama:
{
"messages": [
{"role": "user", "content": "Greet John..."},
{"role": "assistant", "tool_calls": [...]},
{"role": "tool", "content": "Hello, John! Welcome!"},
{"role": "tool", "content": "225"}
]
}
↓
7. Ollama generates final natural language response:
"Hello, John! Welcome! The sum of 150 and 75 is 225."
↓
8. Client displays to user
The Magic of Tool Schemas
The AI knows how to call tools because of the schema:
{
"type": "function",
"function": {
"name": "add",
"description": "Add two numbers together",
"parameters": {
"type": "object",
"properties": {
"a": {"type": "integer", "description": "First number"},
"b": {"type": "integer", "description": "Second number"}
},
"required": ["a", "b"]
}
}
}
The AI reads this and understands:
- ✅ There’s a tool called "add"
- ✅ It needs two integers: a and b
- ✅ It’s for adding numbers
- ✅ Both parameters are required
🎨 Part 7: Customizing and Extending
Adding a Weather Tool
Add to mcp_server.py:
@mcp.tool()
def get_weather(city: str) -> str:
"""Get weather information for a city"""
# In real app, call a weather API
# For demo, return fake data
weather_data = {
"New York": "Sunny, 72°F",
"London": "Rainy, 15°C",
"Tokyo": "Cloudy, 20°C"
}
return weather_data.get(city, f"Weather data not available for {city}")
Restart the server, and now the AI can check weather!
# Test it:
user_msg = "What's the weather in Tokyo?"
Adding a File Operations Tool
@mcp.tool()
def save_note(title: str, content: str) -> str:
"""Save a note to a file"""
import os
filename = f"notes/{title.replace(' ', '_')}.txt"
os.makedirs("notes", exist_ok=True)
with open(filename, "w") as f:
f.write(content)
return f"Note saved to {filename}"
@mcp.tool()
def list_notes() -> list:
"""List all saved notes"""
import os
if not os.path.exists("notes"):
return []
return os.listdir("notes")
Now your AI can manage notes!
Adding a Database Tool
@mcp.tool()
def search_users(name: str) -> list:
"""Search for users by name"""
# Connect to your database
# For demo, return fake data
users = [
{"id": 1, "name": "Alice", "email": "alice@example.com"},
{"id": 2, "name": "Bob", "email": "bob@example.com"}
]
return [u for u in users if name.lower() in u["name"].lower()]
🐛 Troubleshooting Guide
Problem 1: "does not support tools"
Error:
requests.exceptions.HTTPError: 400 Client Error:
registry.ollama.ai/library/codellama:latest does not support tools
Solution: Your model doesn’t support tool calling. Switch to a compatible model:
ollama pull llama3.2
Then update client_ollama.py:
OLLAMA_MODEL = "llama3.2"
Problem 2: "Cannot connect to MCP server"
Error:
ERROR connecting to MCP server: Connection refused
Solutions:
- Make sure server is running:
python mcp_server.py
- Check the port:
netstat -an | grep 8080
# Should show: LISTEN on 8080
- Try a different port: In
mcp_server.py:mcp.run(transport="sse", port=8081)Inclient_ollama.py:MCP_SERVER_URL = "http://127.0.0.1:8081/mcp"
Problem 3: "Ollama not found"
Error:
ollama: command not found
Solution: Reinstall Ollama:
# Linux
curl -fsSL https://ollama.ai/install.sh | sh
# Mac
brew install ollama
# Windows
# Download from https://ollama.ai/download
Problem 4: AI Doesn’t Call Tools
Symptoms:
- AI answers directly without using tools
- Even when tools would be helpful
Solutions:
- Be explicit in your prompt:
# Instead of:
user_msg = "What's 150 + 75?"
# Try:
user_msg = "Use the add tool to calculate 150 + 75"
- Improve tool descriptions:
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers. Use this for any arithmetic addition."""
return a + b
- Use a larger model:
ollama pull llama3.1:8b
Problem 5: Import Errors
Error:
ModuleNotFoundError: No module named 'fastmcp'
Solution: Activate your virtual environment:
source myenv/bin/activate # Linux/Mac
myenv\Scripts\activate # Windows
# Then reinstall:
pip install fastmcp ollama requests
💡 Real-World Project Ideas
1. 📧 Email Assistant
What it does: AI that can read, send, and manage emails.
Tools to implement:
@mcp.tool()
def send_email(to: str, subject: str, body: str) -> str:
"""Send an email"""
# Use smtplib or email API
pass
@mcp.tool()
def search_emails(query: str, limit: int = 10) -> list:
"""Search emails by keyword"""
# Connect to IMAP or Gmail API
pass
@mcp.tool()
def mark_as_read(email_id: str) -> bool:
"""Mark an email as read"""
pass
Example usage:
User: "Send an email to boss@company.com thanking them for the meeting"
AI: *Uses send_email tool*
AI: "Email sent successfully!"
Tech stack:
- Gmail API or SMTP
- OAuth for authentication
- SQLite for local email cache
2. 🗂️ Personal Knowledge Base
What it does: AI that stores and retrieves notes, documents, and ideas.
Tools to implement:
@mcp.tool()
def save_note(title: str, content: str, tags: list) -> str:
"""Save a note with tags"""
pass
@mcp.tool()
def search_notes(query: str) -> list:
"""Search notes using semantic search"""
# Use embeddings for smart search
pass
@mcp.tool()
def summarize_document(file_path: str) -> str:
"""Summarize a PDF or text document"""
pass
Example usage:
User: "Save this: Meeting notes - Q4 review, discussed revenue targets"
AI: *Saves with appropriate tags*
User: "What did we discuss about revenue?"
AI: *Searches and finds relevant notes*
Tech stack:
- Vector database (ChromaDB, FAISS)
- Document parsing (PyPDF2, python-docx)
- Embeddings for semantic search
3. 💰 Personal Finance Manager
What it does: AI that tracks expenses, creates budgets, generates reports.
Tools to implement:
@mcp.tool()
def add_transaction(amount: float, category: str, description: str) -> str:
"""Record a transaction"""
pass
@mcp.tool()
def get_spending_report(month: str, category: str = None) -> dict:
"""Get spending summary"""
pass
@mcp.tool()
def set_budget(category: str, amount: float) -> str:
"""Set a budget for a category"""
pass
@mcp.tool()
def check_budget_status() -> list:
"""Check all budgets and spending"""
pass
Example usage:
User: "I spent $45 on groceries at Walmart"
AI: *Records transaction, checks budget*
AI: "Transaction recorded. You've spent $245/$300 of your grocery budget this month."
Tech stack:
- SQLite for transaction storage
- Pandas for data analysis
- Matplotlib for visualizations
4. 🏠 Smart Home Controller
What it does: AI that controls IoT devices, sets schedules, monitors home.
Tools to implement:
@mcp.tool()
def control_light(room: str, action: str, brightness: int = 100) -> str:
"""Control smart lights (on/off/dim)"""
# Integrate with Phillips Hue, HomeKit, etc.
pass
@mcp.tool()
def set_thermostat(temperature: int) -> str:
"""Set home temperature"""
pass
@mcp.tool()
def get_camera_feed(camera_id: str) -> str:
"""Get snapshot from security camera"""
pass
@mcp.tool()
def create_scene(name: str, devices: list) -> str:
"""Create a scene (e.g., 'Movie Night')"""
pass
Example usage:
User: "I'm going to bed"
AI: *Creates bedtime routine*
- Turns off living room lights
- Dims bedroom lights to 20%
- Lowers thermostat to 68°F
- Locks front door
AI: "Goodnight! Your bedtime routine is active."
Tech stack:
- Home Assistant API
- MQTT for IoT communication
- Webhooks for device control
5. 📊 Data Analysis Assistant
What it does: AI that analyzes datasets, creates visualizations, finds insights.
Tools to implement:
@mcp.tool()
def load_dataset(file_path: str) -> str:
"""Load a CSV or Excel file"""
pass
@mcp.tool()
def describe_data(dataset_id: str) -> dict:
"""Get statistical summary"""
pass
@mcp.tool()
def create_chart(dataset_id: str, chart_type: str, x: str, y: str) -> str:
"""Create visualization"""
pass
@mcp.tool()
def find_correlations(dataset_id: str) -> list:
"""Find correlated variables"""
pass
@mcp.tool()
def export_report(dataset_id: str, format: str) -> str:
"""Generate PDF or HTML report"""
pass
Example usage:
User: "Analyze sales_2024.csv and show me trends"
AI: *Loads data, analyzes, creates charts*
AI: "I found that sales peak in Q4, with 35% growth.
Electronics category drives most revenue.
Here's a chart showing monthly trends."
Tech stack:
- Pandas for data manipulation
- Matplotlib/Plotly for visualization
- Scipy for statistical analysis
6. 🎓 Study Assistant & Flashcard System
What it does: AI that creates study materials, quizzes you, tracks progress.
Tools to implement:
@mcp.tool()
def create_flashcard(question: str, answer: str, topic: str) -> str:
"""Create a new flashcard"""
pass
@mcp.tool()
def start_quiz(topic: str, num_questions: int = 10) -> list:
"""Start a quiz session"""
pass
@mcp.tool()
def record_answer(question_id: str, correct: bool) -> dict:
"""Record quiz performance"""
pass
@mcp.tool()
def get_weak_topics() -> list:
"""Identify topics that need more study"""
pass
@mcp.tool()
def summarize_textbook(file_path: str) -> str:
"""Create study notes from textbook"""
pass
Example usage:
User: "Quiz me on Python basics"
AI: *Generates quiz from flashcards*
AI: "Question 1: What is a list comprehension?
Type 'answer' when ready!"
User: "It's a concise way to create lists"
AI: *Checks answer*
AI: "Correct! Score: 1/10. Next question..."
Tech stack:
- Spaced repetition algorithm
- NLP for answer checking
- PDF parsing for textbook import
- SQLite for progress tracking
🎯 Next Steps
Congratulations! You’ve built your first agentic AI system. Here’s what to explore next:
1. Add More Models
ollama pull mistral # Try different personalities
ollama pull qwen2.5 # Better multilingual support
ollama pull llama3.1:70b # More powerful reasoning
2. Add Authentication
Secure your MCP server with API keys:
@mcp.tool()
def secret_tool(api_key: str, data: str) -> str:
if api_key != "your-secret-key":
return "Unauthorized"
# ... rest of logic
3. Add Streaming Responses
Make the AI respond in real-time:
response = ollama.chat(
model=OLLAMA_MODEL,
messages=messages,
tools=tools,
stream=True, # ← Enable streaming
)
for chunk in response:
print(chunk['message']['content'], end='', flush=True)
4. Deploy to Production
- Use Docker for consistent environments
- Add logging and monitoring
- Implement rate limiting
- Set up health checks
5. Connect Multiple AI Agents
Create a multi-agent system where different AIs specialize in different tasks!
📚 Resources
- Ollama Documentation: https://ollama.ai/docs
- FastMCP Documentation: https://gofastmcp.com
- MCP Protocol Spec: https://modelcontextprotocol.io
- Ollama Python Library: https://github.com/ollama/ollama-python
🤝 Join the Community
- Share your projects on Twitter with #MCPOllama
- Join Ollama Discord: https://discord.gg/ollama
- Contribute to FastMCP on GitHub
🎉 Conclusion
You now know how to:
- ✅ Install and use Ollama locally
- ✅ Understand tool calling and why it matters
- ✅ Build MCP servers with custom tools
- ✅ Connect AI models to real-world functions
- ✅ Create agentic AI applications
The possibilities are endless. What will you build?
Share your creations in the comments below! 👇
Found this helpful? Give it a ❤️ and follow me for more AI tutorials!