In the previous article on (RAG with Elasticsearch), you detailed the full pipeline—ingestion, BM25/hybrid retrieval, and LLM integration—showing how Elasticsearch excels as a dedicated search engine for RAG apps. This follow-up assumes that foundation, shifting focus to MongoDB’s streamlined alternative via Atlas Vector Search, with a side-by-side comparison and thoughts on RAG’s evolution.​ RAG in MongoDB: Quick Overview MongoDB Atlas integrates RAG seamlessly through its Vector Search feature, storing documents with embeddings, metadata, and application data in a single collection for hybrid semantic and keyword queries. This simplifies ingestion (chunking data, generating embeddings) and retrieval, feeding relevant context directly to LLMs without separate storage layers.​

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help