Abstract

Cell-to-cell communication via Delta-Notch signaling is widely used in various tissues and organs to regulate development and patterning; however, the mechanisms regulating Notch signaling for precise cell fate decisions remain poorly understood. Similar to mammals, the intestinal stem cells in the adult Drosophila midgut generate both absorptive and secretory cell progeny, guided by differential levels of Notch activation. Here we performed a forward genetic screen in Drosophila and identified glucosylceramide synthase (GlcT), a rate-limiting enzyme for glycosphingolipid (GSL) production, whose mutation causes the development of secretory cell tumors. Genetic analysis of the GSL synthesis pathway, combined with metabolite rescue experiments, revealed that the tumor…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help