- Weijian Guo1,2 na1,
- Yiting Chen1 na1,
- Huizhong Fan3,
- Xin Huang3,
- Xi Chen4,
- Yousheng Xiao4,
- Chaoming Zhang4,
- Wenliang Zhou1,2 &
- …
- Fuwen Wei1,3,5
We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal d…
- Weijian Guo1,2 na1,
- Yiting Chen1 na1,
- Huizhong Fan3,
- Xin Huang3,
- Xi Chen4,
- Yousheng Xiao4,
- Chaoming Zhang4,
- Wenliang Zhou1,2 &
- …
- Fuwen Wei1,3,5
We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.
Abstract
Background
Deep-diving cetaceans tolerate acute hypoxia better than their terrestrial ancestors and shallow-diving counterparts. However, our poor understanding of how genetic factors, cellular functions, and physiological characteristics combine to drive hypoxia adaptation in deep-diving cetaceans remains a critical gap.
Results
Here, we studied the genetic basis for this ability by creating a de novo genome assembly for the pygmy sperm whale (Kogia breviceps) and comparatively analyzing genomes from 12 cetacean species, including 2 other deep-diving cetaceans. We also sequenced and compared single-nucleus RNA data from the muscle and heart of the pygmy sperm whale and its terrestrial relative Bos taurus. We found that genetic and cellular changes in the HIF-1 pathway, electron transport chain, glucose and fatty acid catabolism, and heart rate may contribute to hypoxia tolerance in deep-diving cetaceans. Key adaptations include rapid evolution of glycolysis-related genes (PYGM and ENO3), differential expression of HIF-1 pathway genes like ARNT, and accelerated conserved noncoding elements in genes such as ATP5F1E (ATP synthase) and DMD (dystrophin). We found an increase in myocytes and type II cardiomyocytes in the pygmy sperm whale’s muscle and heart tissues, which may support energy metabolism and homeostasis during deep dives.
Conclusions
These findings suggest deep-diving cetaceans have unique genetic and cellular adaptations to cope with hypoxia, offering insights into how mammals handle low oxygen levels at the cellular level.
Data availability
The raw sequencing data for the PacBio HiFi reads and Hi-C linked reads, along with the genome assembly of the pygmy sperm whale, are available in the National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation as accession (GSA: CRA017691 [102] and GWH: GWHEUUE00000000.1 [103]). The single-nucleus RNA-seq data (the muscle and heart from pygmy sperm whale and cattle) have been deposited in the National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation under the accession code (GSA: CRA017691 [102]).
Abbreviations
ACNEG:
Accelerated conserved noncoding element-related gene
ATP:
Adenosine triphosphate
BUSCO:
Benchmarking universal single-copy ortholog
CNE:
Conserved noncoding element
DEG:
Differentially expressed gene
DNA:
Deoxyribonucleic acid
ETC:
Electron transport chain
GO:
Gene Ontology
Hi-C:
Chromosome conformation capture
HIF:
Hypoxia-inducible factor
HIF-1:
Hypoxia-inducible factor-1
HiFi:
High fidelity
KEGG:
Kyoto Encyclopedia of Genes and Genomes
LINE:
Long interspersed nuclear elements
LRT:
Likelihood ratio test
NCBI:
National Center for Biotechnology Information
NR:
Nonredundant protein sequence database
PCA:
Principal component analysis
PDK:
Pyruvate dehydrogenase kinases isoenzyme
PSG:
Positively selected gene
PSS:
Positively selected site
REG:
Rapidly evolving gene
RIN:
Ribonucleic acid integrity numbers
RNA:
Ribonucleic acid
RNA-seq:
Ribonucleic acid sequencing
snRNA:
Single-nucleus ribonucleic acid
tSNE:
T-distributed stochastic neighbor embedding
WEC:
Whale-enriched cell
References
Yuan Y, Zhang Y, Zhang P, Liu C, Wang J, Gao H, et al. Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci USA. 2021;118:e2106080118.
Foote AD, Liu Y, Thomas GWC, Vinař T, Alföldi J, Deng J, et al. Convergent evolution of the genomes of marine mammals. Nat Genet. 2015;47:272–5.
Kooyman GL, Ponganis PJ. Diving physiology. In: Würsig B, Thewissen JGM, Kovacs KM, editors. Encyclopedia of marine mammals. 3rd ed. Academic Press; 2018. p. 267–71.
Berta A, Sumich JL, Kovacs KM. Chapter 10 - Respiration and diving physiology. In: Berta A, Sumich JL, Kovacs KM, editors. Marine mammals. 3rd ed. San Diego: Academic Press; 2015. p. 299–343.
Baird RW, Webster DL, McSweeney DJ, Ligon AD, Schorr GS, Barlow J. Diving behaviour of Cuvier’s (Ziphius cavirostris) and Blainville’s (Mesoplodon densirostris) beaked whales in Hawai‘i. Can J Zool. 2006;84:1120–8.
Baird RW. Sightings of dwarf (Kogia sima) and pygmy (K. breviceps) sperm whales from the main Hawaiian Islands. Pac Sci. 2005;59:461–6.
Slip DJ, Hindell MA, Burton HR. Fourteen. Diving behavior of southern elephant seals from Macquarie Island: an overview. In: Boeuf BJL, Laws RM, editors. Elephant seals. Berkeley: University of California Press; 2023. p. 253–70. 1.
Butler PJ. Metabolic regulation in diving birds and mammals. Respir Physiol Neurobiol. 2004;141:297–315.
Hindle AG. Diving deep: understanding the genetic components of hypoxia tolerance in marine mammals. J Appl Physiol. 2020;128:1439–46.
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, et al. Molecular mechanisms of adaptive evolution in wild animals and plants. Sci China Life Sci. 2023;66:453–95.
Tian R, Wang Z, Niu X, Zhou K, Xu S, Yang G. Evolutionary genetics of hypoxia tolerance in cetaceans during diving. Genome Biol Evol. 2016;8:827–39.
Krüger A, Fabrizius A, Mikkelsen B, Siebert U, Folkow LP, Burmester T. Transcriptome analysis reveals a high aerobic capacity in the whale brain. Comp Biochem Physiol A Mol Integr Physiol. 2020;240:110593.
Ochrymowych C, Lambertsen RH. Anatomy and vasculature of a minke whale heart. Am J Anat. 1984;169:165–75.
Lillie MA, Piscitelli MA, Vogl AW, Gosline JM, Shadwick RE. Cardiovascular design in fin whales: high-stiffness arteries protect against adverse pressure gradients at depth. J Exp Biol. 2013;216:2548–63.
Goldbogen JA, Cade DE, Calambokidis J, Czapanskiy MF, Fahlbusch J, Friedlaender AS, et al. Extreme bradycardia and tachycardia in the world’s largest animal. Proc Natl Acad Sci USA. 2019;116:25329–32.
Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M. Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science. 2013;340:1234192.
Ponganis PJ. Diving physiology of marine mammals and seabirds. Cambridge University Press; 2015. 1.
Gordon WE, Baek S, Nguyen HP, Kuo Y-M, Bradley R, Fong SL, et al. Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas. Nat Commun. 2024;15:12.
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50:1–14.
Wen L, Li G, Huang T, Geng W, Pei H, Yang J, et al. Single-cell technologies: from research to application. Innovation (Camb). 2022;3:100342.
Ferreira PG, Muñoz-Aguirre M, Reverter F, Sá Godinho CP, Sousa A, Amadoz A, et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat Commun. 2018;9:1–15.
Franzén O, Gan L-M, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database. 2019;2019:baz046.
Hu C, Li T, Xu Y, Zhang X, Li F, Bai J, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2023;51:D870–6. 1.
Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:268–83.
Cogliati S, Cabrera-Alarcón JL, Enriquez JA. Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans. 2021;49:2655–68.
Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT. Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet. 2005;14:2737–48.
Samanta D, Semenza GL. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim Biophys Acta Rev Cancer. 2018;1870:15–22.
Herman MA, Kahn BB. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J Clin Invest. 2006;116:1767–75.
Chen J, Zhang Z, Ni J, Sun J, Ju F, Wang Z, et al. ENO3 promotes colorectal cancer progression by enhancing cell glycolysis. Med Oncol. 2022;39:80.
Atas E, Oberhuber M, Kenner L. The implications of PDK1-4 on tumor energy metabolism, aggressiveness and therapy resistance. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.583217.
Almaguel FA, Casiano CA. Alpha-enolase: emerging tumor-associated antigen, cancer biomarker, and oncotherapeutic target. Front Genet. 2021;11:614726.
Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci. 2015;9:22.
Mylonis I, Simos G, Paraskeva E. Hypoxia-inducible factors and the regulation of lipid metabolism. Cells. 2019;8:214.
Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, Collins JM, et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 2014;9:349–65.
IJlst L, Mandel H, Oostheim W, Ruiter JP, Gutman A, Wanders RJ. Molecular basis of hepatic carnitine palmitoyltransferase I deficiency. J Clin Invest. 1998;102:527–31.
He M, Pei Z, Mohsen A-W, Watkins P, Murdoch G, Van Veldhoven PP, et al. Identification and characterization of new long chain acyl-CoA dehydrogenases. Mol Genet Metab. 2011;102:418–29.
Blawas AM, Nowacek DP, Rocho-Levine J, Robeck TR, Fahlman A. Scaling of heart rate with breathing frequency and body mass in cetaceans. Philos Trans R Soc Lond B Biol Sci. 2021;376:20200223.
Finsterer J, Cripe L. Treatment of dystrophin cardiomyopathies. Nat Rev Cardiol. 2014;11:168–79.
Thomas TO, Morgan TM, Burnette WB, Markham LW. Correlation of heart rate and cardiac dysfunction in Duchenne muscular dystrophy. Pediatr Cardiol. 2012;33:1175–9.
van Putten M, van der Pijl EM, Hulsker M, Verhaart IEC, Nadarajah VD, van der Weerd L, et al. Low dystrophin levels in heart can delay heart failure in mdx mice. J Mol Cell Cardiol. 2014;69:17–23.
Storz JF, Cheviron ZA. Physiological genomics of adaptation to high-altitude hypoxia. Annu Rev Anim Biosci. 2021;9:149–71.
Suzuki N, Gradin K, Poellinger L, Yamamoto M. Regulation of hypoxia-inducible gene expression after HIF activation. Exp Cell Res. 2017;356:182–6.
Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem. 2003;278:14013–9.
Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep. 2019;19:783–91.
Ramirez J-M, Folkow LP, Blix AS. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol. 2007;69:113–43.
Sierra E, Fernández A, Espinosa de los Monteros A, Díaz-Delgado J, Bernaldo de Quirós Y, García-Álvarez N, et al. Comparative histology of muscle in free ranging cetaceans: shallow versus deep diving species. Sci Rep. 2015;5:15909. 1.
Williams TM, Fuiman LA, Kendall T, Berry P, Richter B, Noren SR, et al. Exercise at depth alters bradycardia and incidence of cardiac anomalies in deep-diving marine mammals. Nat Commun. 2015;6:6055.
Yang L, Sun N, Zeng H, Wang Y, Chen W, Ding Z, et al. Enlarged fins of Tibetan catfish provide new evidence of adaptation to high plateau. Sci China Life Sci. 2023;66:1554–68.
Bi J, Hu B, Zheng J, Wang J, Xiao W, Wang D. Characterization of the hypoxia-inducible factor 1 alpha gene in the sperm whale, beluga whale, and Yangtze finless porpoise. Mar Biol. 2015;162:1201–13.
Allen KN, Vázquez-Medina JP. Natural tolerance to ischemia and hypoxemia in diving mammals: a review. Front Physiol. 2019;10:1199.
Allen KN, Torres-Velarde JM, Vazquez JM, Moreno-Santillán DD, Sudmant PH, Vázquez-Medina JP. Hypoxia exposure blunts angiogenic signaling and upregulates the antioxidant system in endothelial cells derived from elephant seals. BMC Biol. 2024;22:91.
Teng Y, Porfírio-Sousa AL, Ribeiro GM, Arend MC, da Silva ML, Chen ES, et al. Analyses of the pericyte transcriptome in ischemic skeletal muscles. Stem Cell Res Ther. 2021;12:183.
Bagchi A, Batten AJ, Levin M, Allen KN, Fitzgerald ML, Hückstädt LA, et al. Intrinsic anti-inflammatory properties in the serum of two species of deep-diving seal. J Exp Biol. 2018;221:jeb178491. 1.
Magri K, Eftedal I, Petroni Magri V, Matity L, Azzopardi CP, Muscat S, et al. Acute effects on the human peripheral blood transcriptome of decompression sickness secondary to scuba diving. Front Physiol. 2021. https://doi.org/10.3389/fphys.2021.660402.
Hu Y, Thapa A, Fan H, Ma T, Wu Q, Ma S, et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci Adv. 2020;6:eaax5751.
Miyokawa R, Kanaya HJ, Itoh TQ, Kobayakawa Y, Kusumi J. Immature symbiotic system between horizontally transmitted green algae and brown hydra. Sci Rep. 2021;11:2921.
Piotrowski ER, Tift MS, Crocker DE, Pearson AB, Vázquez-Medina JP, Keith AD, et al. Ontogeny of carbon monoxide-related gene expression in a deep-diving marine mammal. Front Physiol. 2021. https://doi.org/10.3389/fphys.2021.762102.
Du X, Hu Y, Huang G, Wei F. The metabolic adaptation in wild vertebrates via omics approaches. Life Metab. 2022;1:234–41.
Nogales-Gadea G, Brull A, Santalla A, Andreu AL, Arenas J, Martín MA, et al. McArdle disease: update of reported mutations and polymorphisms in the PYGM gene. Hum Mutat. 2015;36:669–78.
Rivero J-LL. Locomotor muscle fibre heterogeneity and metabolism in the fastest large-bodied rorqual: the fin whale (Balaenoptera physalus). J Exp Biol. 2018;221:jeb177758.
Huelsmann M, Hecker N, Springer MS, Gatesy J, Sharma V, Hiller M. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Sci Adv. 2019;5:eaaw6671.
Endo Y, Kamei K, Inoue-Murayama M. Genetic signatures of lipid metabolism evolution in Cetacea since the divergence from terrestrial ancestor. J Evol Biol. 2018;31:1655–65.
Zhang X, Chen X, Chen J, Ma Y, Huang S, Cai M, et al. Functional analysis of variants in DMD exon/intron 10 predicted to affect splicing. J Hum Genet. 2022;67:495–501.
Sharma U, Atri S, Sharma MC, Sarkar C, Jagannathan NR. Skeletal muscle metabolism in Duchenne muscular dystrophy (DMD): an in-vitro proton NMR spectroscopy study. Magn Reson Imaging. 2003;21:145–53.
Kerem D, Hammond DD, Elsner R. Tissue glycogen levels in the Weddell seal, Leptonychotes weddelli: a possible adaptation to asphyxial hypoxia. Comp Biochem Physiol A Physiol. 1973;45:731–6.
Zhang H, Zhang T, Wang D, Jiang Y, Guo T, Zhang Y, et al. IFN-γ regulates the transformation of microglia into dendritic-like cells via the ERK/c-myc signaling pathway during cerebral ischemia/reperfusion in mice. Neurochem Int. 2020;141:104860.
Chai S, Tian R, Xu S, Ren W, Yang G. Evolution of fertilization-related genes provides insights into reproductive health in natural ascrotal mammals. Front Ecol Evol. 2022;9:828325.
Kang H, Liu Q, Seim I, Zhang W, Li H, Gao H, et al. A genome and single-nucleus cerebral cortex transcriptome atlas of the short-finned pilot whale Globicephala macrorhynchus. Mol Ecol Resour. 2023;23:1108–23.
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170–5.
Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36:2896–8.
Zhou C, McCarthy SA, Durbin R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics. 2023;39:btac808.
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38:4647–54.
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
Tempel S. Using and understanding repeatmasker. Methods Mol Biol. 2012;859:29–51.
Xin H, Xiyang Z, Liyuan Z, Guixin D, Wenliang Z, Dengfeng G, et al. Conservation genomics highlights the urgency of protecting Indo-Pacific humpback dolphins (Sousa chinensis) in Chinese waters. Sci CHINA Life Sci. 2025. 1.
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34 suppl_2:W435–9. 1.
Burge CB, Karlin S. Finding the genes in genomic DNA. Curr Opin Struct Biol. 1998;8:346–54.
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom Bioinform. 2021;3:lqaa108.
Keilwagen J, Hartung F, Grau J. GeMoMa: homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods Mol Biol. 2019;1962:161–77.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc. 2013;8:1494–512.
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–66.
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9:R7.
Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou L-P, Mi H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31:8–22.
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. Interproscan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, et al. Integrating gene annotation with orthology inference at scale. Science. 2023;380:eabn3107.
Harris RS. Improved pairwise alignment of genomic DNA. The Pennsylvania State University; 2007. 1.
Ranwez V, Douzery EJ, Cambon C, Chantret N, Delsuc F. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol Biol Evol. 2018;35:2582–4.
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 2017;34:1812–9.
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.
Lowe CB, Kellis M, Siepel A, Raney BJ, Clamp M, Salama SR, et al. Three periods of regulatory innovation during vertebrate evolution. Science. 2011;333:1019–24.
Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F. Comparative analysis reveals epigenomic evolu