Abstract

Soft artificial muscles offer transformative potential in robotics, wearable electronics, and biomedical devices due to their light weight, mechanical compliance, and multidirectional actuation. However, their broader utility is hindered by an intrinsic trade-off between stretchability and energy output, often resulting in limited work densities. Here, a high-performance magnetic composite actuator is presented that addresses this limitation through an optimized dual cross-linked polymer network comprising covalent bonds and dynamic physical interactions. The actuator incorporates a stiffness-tunable polymer matrix embedded with surface-functionalized magnetic microparticles, enabling reversible, on-demand stiffness modulation and reprogrammable actuation. This composite a…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help