- Open Access
Eugene A. Eliseev1,*, Anna N. Morozovska2,*, Sergei V. Kalinin3,†, Long-Qing Chen4,‡, and Venkatraman Gopalan4,§
- 1Department of functional oxide materials, Frantsevich Institute for Problems in Materials Science, National Academy of Sciences of Ukraine, 3, str. Omeliana Pritsaka, 03142 Kyiv, Ukraine
- 2Department of magnetic phenomena physics, Institute of Physics, Nationa…
- Open Access
Eugene A. Eliseev1,*, Anna N. Morozovska2,*, Sergei V. Kalinin3,†, Long-Qing Chen4,‡, and Venkatraman Gopalan4,§
-
1Department of functional oxide materials, Frantsevich Institute for Problems in Materials Science, National Academy of Sciences of Ukraine, 3, str. Omeliana Pritsaka, 03142 Kyiv, Ukraine
-
2Department of magnetic phenomena physics, Institute of Physics, National Academy of Sciences of Ukraine, 46, Nauki avenue, 03028 Kyiv, Ukraine
-
3Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
-
4Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
-
*These authors contributed equally
-
†Contact author: sergei2@utk.edu
-
‡Contact author: lqc3@psu.edu
-
§Contact author: vgopalan@psu.edu
Abstract
Proximity ferroelectricity is a paradigm for inducing ferroelectricity when a nonferroelectric polar material (such as AlN), which is unswitchable with an external field below the dielectric breakdown field, becomes a practically switchable ferroelectric in direct contact with a thin switchable ferroelectric layer (such as Al1−xScxN). Here, we develop a Landau-Ginzburg-Devonshire approach to study the proximity effect of local piezoelectric response and polarization reversal in wurtzite ferroelectric multilayers under a sharp electrically biased tip. Using finite-element modeling, we analyze the probe-induced nucleation of nanodomains, the features of local polarization hysteresis loops and coercive fields in the Al1−xScxN/AlN bilayers and three-layers. Similar to the wurtzite multilayers sandwiched between two parallel electrodes, the regimes of “proximity switching” (when all layers collectively switch) and the regime of “proximity suppression” (when they collectively do not switch) are the only two possible regimes in the probe-electrode geometry. However, the parameters and asymmetry of the local piezoresponse and polarization hysteresis loops depend significantly on the sequence of the layers with respect to the probe. The physical mechanism of proximity ferroelectricity in the local probe geometry is a depolarizing electric field determined by the polarization of the layers and their relative thickness. The field, whose direction is opposite to the polarization vector in the layer(s) with the larger spontaneous polarization (such as AlN), renormalizes the double-well ferroelectric potential to lower the steepness of the switching barrier in the “otherwise unswitchable” polar layers. Tip-based control of domains in otherwise nonferroelectric layers using proximity ferroelectricity can provide nanoscale control of domain reversal in memory, actuation, sensing, and optical applications. The ability of the tip-induced proximity switching to differentially switch multilayers, based on the order of the layers, provides a powerful tool for selective domain engineering.
- Electric polarization
- Ferroelectric domains
- Ferroelectricity
- Piezoelectricity
- III-V semiconductors
- Multilayer thin films
- Wurtzite
- Scanning probe microscopy
Article Text
Supplemental Material
References (58)
- C. H. Skidmore, R. J. Spurling, J. Hayden, S. M. Baksa, D. Behrendt, D. Goodling, J. L. Nordlander, A. Suceava, J. Casamento, B. Akkopru-Akgun, S. Calderon, I. Dabo, V. Gopalan, K. P. Kelley, A. M. Rappe, S. Trolier-McKinstry, E. C. Dickey, and J.-P. Maria, Proximity ferroelectricity in wurtzite heterostructures, Nature 637, 574 (2025).
- N. Wolff, G. Schönweger, I. Streicher, M. R. Islam, N. Braun, p. straňák, l. kirste, m. prescher, a. lotnyk, h. kohlstedt, and s. leone, demonstration and stem Analysis of Ferroelectric Switching in MOCVD-grown single crystalline Al0.85Sc0.15N, Adv. Phys. Res. 3, 2300113 (2024).
- W. Zhu, J. Hayden, F. He, J. I. Yang, P. Tipsawat, M. D. Hossain, J. P. Maria, and S. Trolier-McKinstry, Strongly temperature dependent ferroelectric switching in AlN, Al1−xScxN, and Al1−xBxN thin films, Appl. Phys. Lett. 119, 062901 (2021).
- M. H. Park, C.-C. Chung, T. Schenk, C. Richter, K. Opsomer, C. Detavernier, C. Adelmann, J. L. Jones, T. Mikolajick, and U. Schroeder, Effect of annealing ferroelectric HfO2 thin films: In Situ high temperature X-ray diffraction. Adv. Electron. Mater. 4, 1800091 (2018).
- J. Yang, A. V. Ievlev, A. N. Morozovska, E. Eliseev, J. D. Poplawsky, D. Goodling, R. J. Spurling, J.-P. Maria, S. V. Kalinin, and Y. Liu, Coexistence and interplay of two ferroelectric mechanisms in Zn1−xMgxO, Adv. Mater. 36 (39), 2404925 (2024).
- V. Gopalan, V. Dierolf, and D. A. Scrymgeour, Defect–domain wall interactions in trigonal ferroelectrics, Annu. Rev. Mater. Res. 37, 449 (2007).
- T. J. Yang, Venkatraman Gopalan, P. J. Swart, and U. Mohideen, Direct observation of pinning and bowing of a single ferroelectric domain wall, Phys. Rev. Lett. 82, 4106 (1999).
- T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M. H. Park, S. Fichtner, P. D. Lomenzo, M. Hoffmann, and U. Schroeder, Next generation ferroelectric materials for semiconductor process integration and their applications, J. Appl. Phys. 129, 100901 (2021).
- K.-H. Kim, I. Karpov, R. H. Olsson III, and D. Jariwala, Wurtzite and fluorite ferroelectric materials for electronic memory, Nat. Nanotechnol. 18, 422 (2023).
- K. P. Kelley, A. N. Morozovska, E. A. Eliseev, Y. Liu, S. S. Fields, S. T. Jaszewski, T. Mimura, J. F. Ihlefeld, and S. V. Kalinin, Ferroelectricity in hafnia controlled via surface electrochemical state, Nat. Mater. 22, 1144 (2023).
- S. Kang, W.-S. Jang, A. N. Morozovska, O. Kwon, Y. Jin, Y.-H. Kim, H. Bae, S. V. Kalinin, Y.-M. Kim, Y. Kim, et al., Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment, Science 376 (6594), 731 (2022).
- A. N. Morozovska, M. V. Strikha, K. P. Kelley, S. V. Kalinin, and E. A. Eliseev, Effective Landau-type model of a HfxZr1−xO2-graphene nanostructure, Phys. Rev. Appl. 20, 054007 (2023).
- A. L. Roytburd, S. Zhong, and S. P. Alpay, Dielectric anomaly due to electrostatic coupling in ferroelectric-paraelectric bilayers and multilayers, Appl. Phys. Lett. 87, 092902 (2005).
- R. Nath, S. Zhong, S. P. Alpay, B. D. Huey, and M. W. Cole, Enhanced piezoelectric response from barium strontium titanate multilayer films, Appl. Phys. Lett. 92, 012916 (2008).
- M. B. Okatan, I. B. Misirlioglu, and S. P. Alpay, Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties, Phys. Rev. B 82, 094115 (2010).
- I. B. Misirlioglu, G. Akcay, S. Zhong, and S. P. Alpay, Interface effects in ferroelectric bilayers and heterostructures, J. Appl. Phys. 101, 036107 (2007).
- X. Wu, K. M. Rabe, and D. Vanderbilt, Interfacial enhancement of ferroelectricity in CaTiO3/BaTiO3 superlattices, Phys. Rev. B 83, 020104(R) (2011).
- E. Bousquet, M. Dawber, N. Stucki, Celine Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature 452, 732 (2008).
- Y. Liu, J. Liu, H. Pan, X. Cheng, Z. Hong, B. Xu, L.-Q. Chen, C.-W. Nan, and Y.-H. Lin, Phase-field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage performance, Adv. Mater. 34, 2108772 (2022).
- V. A. Stephanovich, I. A. Luk’yanchuk, and M. G. Karkut, Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices, Phys. Rev. Lett. 94, 047601 (2005).
- R. Maran, S. Yasui, E. A. Eliseev, M. D. Glinchuk, A. N. Morozovska, H. Funakubo, I. Takeuchi, and N. Valanoor, Interface control of a morphotropic phase boundary in epitaxial samarium-modified bismuth ferrite superlattices, Phys. Rev. B 90, 245131 (2014).
- R. Maran, S. Yasui, E. Eliseev, A. Morozovska, F. Hiroshi, T. Ichiro, and V. Nagarajan, Enhancement of dielectric properties in epitaxial bismuth ferrite – bismuth samarium ferrite superlattices, Adv. Electron. Mater. 2, 1600170 (2016).
- E. A. Eliseev, A. N. Morozovska, J.-P. Maria, L.-Q. Chen, and V. Gopalan, A thermodynamic theory of proximity ferroelectricity, Phys. Rev. X 15, 021058 (2025).
- H. Lu, Y. Tan, J. P. McConville, Z. Ahmadi, B. Wang, M. Conroy, K. Moore, U. Bangert, J. E. Shield, L. Q. Chen, J. M. Gregg, and A. Gruverman, Electrical tunability of domain wall conductivity in LiNbO3 thin films, Adv. Mater. 31 (48), 1902890 (2019).
- V. R. Aravind, A. N. Morozovska, S. Bhattacharyya, D. Lee, S. Jesse, I. Grinberg, Y. L. Li, S. Choudhury, P. Wu, K. Seal, A. M. Rappe, S. V. Svechnikov, E. A. Eliseev, S. R. Phillpot, L. Q. Chen, Venkatraman Gopalan, and S. V. Kalinin, Correlated polarization switching in the proximity of a 180° domain wall, Phys. Rev. B 82, 024111 (2010).
- S. V. Kalinin, E. Karapetian, and M. Kachanov, Nanoelectromechanics of piezoresponse force microscopy, Phys. Rev. B 70, 184101 (2004).
- A. N. Morozovska, E. A. Eliseev, and S. V. Kalinin, The piezoresponse force microscopy of surface layers and thin films: Effective response and resolution function, J. Appl. Phys. 102, 074105 (2007).
- A. N. Morozovska, E. A. Eliseev, S. L. Bravina, and S. V. Kalinin, Resolution function theory in piezoresponse force microscopy: wall imaging, spectroscopy, and lateral resolution, Phys. Rev. B 75, 174109 (2007).
- D. A. Scrymgeour and V. Gopalan, Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall, Phys. Rev. B 72, 024103 (2005).
- J. H. Wang and C. Q. Chen, A coupled analysis of the piezoresponse force microscopy signals, Appl. Phys. Lett. 99, 171913 (2011).
- G. Zhang, W. Liu, J. Chen, and S. Shen, Nonlinear electrochemomechanical modelling of electrochemical strain microscopy imaging, Nanotechnology 31, 315704 (2020).
- A. Gruverman, M. Alexe, and D. Meier, Piezoresponse force microscopy and nanoferroic phenomena, Nat. Commun. 10, 1661 (2019).
- G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotski, Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy, Appl. Phys. Lett. 82, 103 (2003).
- M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, Ferroelectric domain breakdown, Phys. Rev. Lett. 90, 107601 (2003).
- M. Molotskii, Generation of ferroelectric domains in atomic force microscope, J. Appl. Phys. 93, 6234 (2003).
- B. Wang, F. Li, and L.-Q. Chen, Inverse domain-size dependence of piezoelectricity in ferroelectric crystals, Adv. Mater. 33, 2105071 (2021).
- J.-J. Wang, B. Wang, and L.-Q. Chen, Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method, Annu. Rev. Mater. Res. 49, 127 (2019).
- A. N. Morozovska, E. A. Eliseev, Y. Li, S. V. Svechnikov, P. Maksymovych, V. Y. Shur, V. Gopalan, L.-Q. Chen, and S. V. Kalinin, Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach, Phys. Rev. B 80, 214110 (2009).
- Y.-H. Shin, I. Grinberg, I.-W. Chen, and A. M. Rappe, Nucleation and growth mechanism of ferroelectric domain-wall motion, Nature 449, 881 (2007).
- D. Behrendt, V. B. Nascimento, and A. M. Rappe, Multidomain simulations of aluminum nitride with machine-learned force fields, Phys. Rev. B 110, 035204 (2024).
- S. Zhou, S. Qin, and A. M. Rappe, Domain wall reactions in multiple-order parameter ferroelectrics, Phys. Rev. Lett. 134, 136802 (2025).
- A. N. Morozovska, E. A. Eliseev, and S. V. Kalinin, Electrochemical strain microscopy with blocking electrodes: The role of electromigration and diffusion, J. Appl. Phys. 111, 014114 (2012).
- A. N. Morozovska, E. A. Eliseev, G. S. Svechnikov, V. Gopalan, and S. V. Kalinin, Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall, J. Appl. Phys. 103, 124110 (2008).
- S. Fichtner, N. Wolff, F. Lofink, L. Kienle, and B. Wagner, AlScN: A III–V semiconductor based ferroelectric, J. Appl. Phys. 125, 114103 (2019).
- S. Fichtner, N. Wolff, G. Krishnamurthy, A. Petraru, S. Bohse, F. Lofink, S. Chemnitz, H. Kohlstedt, L. Kienle, and B. Wagner, Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems, J. Appl. Phys. 122, 035301 (2017).
- Y. Gu, A. C. Meng, A. Ross, and L.-Q. Chen, A phenomenological thermodynamic energy density function for ferroelectric wurtzite Al1−xScxN single crystals, J. Appl. Phys. 135, 094102 (2024).
- K. Eriksson, D. Estep, and C. Johnson, Applied Mathematics, Body and Soul (Springer, Berlin, 2004).
- I. S. Vorotiahin, E. A. Eliseev, Q. Li, S. V. Kalinin, Y. A. Genenko, and A. N. Morozovska, Tuning the polar states of ferroelectric films via surface charges and flexoelectricity, Acta Mater. 137 (15), 85 (2017).
- O. Ambacher, B. Christian, N. Feil, D. F. Urban, C. Elsässer, M. Prescher, and L. Kirste, Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties, J. Appl. Phys. 130, 045102 (2021).
- A. K. Tagantsev and G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films, J. Appl. Phys. 100, 051607 (2006).
- C. H. Woo and Y. Zheng, Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional, Appl. Phys. A: Mater. Sci. Process. 91, 59 (2008).
- R. Kretschmer and K. Binder, Surface effects on phase transition in ferroelectrics and dipolar magnets, Phys. Rev. B 20, 1065 (1979).
- I. S. Vorotiahin, A. N. Morozovska, and Y. A. Genenko, Hierarchy of domain reconstruction processes due to charged defect migration in acceptor doped ferroelectrics, Acta Mater. 184, 267 (2020).
- E. A. Eliseev, M. D. Glinchuk, A. N. Morozovska, and Ya. V. Yakovenko, Polar properties and hysteresis loops of thin films multilayers ferroelectric BaTiO3/paraelectric SrTiO3, Ukr. J. Phys. 57, 1038 (2012).
- See Supplemental Material at http://link.aps.org/supplemental/10.1103/plhw-fkk9 for calculation details and additional figures.
- V. Skalskyi and Z. Nazarchuk, Magnetoelastic Acoustic Emission. Springer-AAS Acoustics Series (Springer, Singapore, 2024).
- R. Ignatans, D. Damjanovic, and V. Tileli, Individual Barkhausen pulses of ferroelastic nanodomains, Phys. Rev. Lett. 127, 167601 (2021).
- https://www.wolfram.com/mathematica, https://notebookarchive.org/2025-06-6ywoq00