Abstract

The stability of localization in the presence of interactions remains an open problem, with finite-size effects posing significant challenges to numerical studies. In this work, we investigate the perturbative stability of noninteracting localization under weak interactions, which allows us to analyze much larger system sizes. Focusing on disordered Anderson and quasiperiodic Aubry-André models in one dimension, and using the adiabatic gauge potential at first order in perturbation theory, we compute first-order corrections to noninteracting local integrals of motion (LIOMs). We find that for at least an O(1) fraction of the LIOMs, the corrections are well-controlled and converge at large system sizes, while others suffer from resonances. Additionally, we introduce and…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help