- Open Access
Guillermo González-García1,2, Alexey V. Gorshkov3,4, J. Ignacio Cirac1,2, and Rahul Trivedi1,2,*
- 1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- 2Munich Center for Quantum Science and Technology (MCQST), SchellingStraße 4, D-80799 Munich, Germany
- 3Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- …
- Open Access
Guillermo González-García1,2, Alexey V. Gorshkov3,4, J. Ignacio Cirac1,2, and Rahul Trivedi1,2,*
-
1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
-
2Munich Center for Quantum Science and Technology (MCQST), SchellingStraße 4, D-80799 Munich, Germany
-
3Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
-
4Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
-
*Contact author: rahul.trivedi@mpq.mpg.de
Abstract
We characterize the dynamical state of many-body bosonic and fermionic many-body models with intersite Gaussian couplings, on-site non-Gaussian interactions, and local dissipation comprising incoherent particle loss, particle gain, and dephasing. We first establish that, for fermionic systems, if the dephasing noise is larger than the non-Gaussian interactions, irrespective of the Gaussian coupling strength, the system state is a convex combination of Gaussian states at all times. Furthermore, for bosonic systems, we show that if the particle loss and particle gain rates are larger than the Gaussian intersite couplings, the system remains in a separable state at all times. Building on this characterization, we establish that at noise rates above a threshold, there exists a classical algorithm that can efficiently sample from the system state of both the fermionic and bosonic models. Finally, we show that, unlike fermionic systems, bosonic systems can evolve into states that are not convex Gaussian even when the dissipation is much higher than the on-site non-Gaussianity. Similarly, unlike bosonic systems, fermionic systems can generate entanglement even with noise rates much larger than the intersite couplings.
- Computational complexity
- Open quantum systems & decoherence
- Quantum information architectures & platforms
- Quantum simulation
Article Text
Supplemental Material
References (77)
- J. Preskill, Quantum 2, 79 (2018).
- A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller, Nature (London) 607, 667 (2022).
- S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho et al., Nature (London) 595, 227 (2021).
- P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D. Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang, T. Lahaye et al., Nature (London) 595, 233 (2021).
- D. Wei, A. Rubio-Abadal, B. Ye, F. Machado, J. Kemp, K. Srakaew, S. Hollerith, J. Rui, S. Gopalakrishnan, N. Y. Yao, I. Bloch, and J. Zeiher, Science 376, 716 (2022).
- G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin, Science 374, 1242 (2021).
- O. Shtanko, A. Deshpande, P. S. Julienne, and A. V. Gorshkov, PRX Quantum 2, 030350 (2021).
- R. Trivedi and J. I. Cirac, Phys. Rev. Lett. 129, 260405 (2022).
- D. Aharonov, Phys. Rev. A 62, 062311 (2000).
- D. Aharonov, X. Gao, Z. Landau, Y. Liu, and U. Vazirani, in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC ’23 (ACM, Orlando, 2023).
- J. Tindall, M. Fishman, M. Stoudenmire, and D. Sels, PRX Quantum 5, 010308 (2024).
- K. Kechedzhi, S. Isakov, S. Mandrà, B. Villalonga, X. Mi, S. Boixo, and V. Smelyanskiy, Future Gener. Comput. Syst. 153, 431 (2024).
- Y. Shao, F. Wei, S. Cheng, and Z. Liu, Phys. Rev. Lett. 133, 120603 (2024).
- E. Fontana, M. S. Rudolph, R. Duncan, I. Rungger, and C. Cîrstoiu, npj Quantum Inf. 11, 84 (2025).
- M. S. Rudolph, E. Fontana, Z. Holmes, and L. Cincio, arXiv:2308.09109.
- X. Gao and L. Duan, arXiv:1810.03176.
- H.-J. Liao, K. Wang, Z.-S. Zhou, P. Zhang, and T. Xiang, arXiv:2308.03082.
- G. González-García, R. Trivedi, and J. I. Cirac, PRX Quantum 3, 040326 (2022).
- T. Schuster, C. Yin, X. Gao, and N. Y. Yao, arXiv:2407.12768.
- G. González-García, J. I. Cirac, and R. Trivedi, Quantum 9, 1730 (2025).
- J. Rajakumar, J. D. Watson, and Y.-K. Liu, in Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (SIAM, New Orleans, 2025), pp. 1037–1056.
- S. D. Mishra, M. Frías-Pérez, and R. Trivedi, PRX Quantum 5, 020317 (2024).
- Z. Z. Yan, B. M. Spar, M. L. Prichard, S. Chi, H.-T. Wei, E. Ibarra-García-Padilla, K. R. A. Hazzard, and W. S. Bakr, Phys. Rev. Lett. 129, 123201 (2022).
- B. M. Spar, E. Guardado-Sanchez, S. Chi, Z. Z. Yan, and W. S. Bakr, Phys. Rev. Lett. 128, 223202 (2022).
- M. A. Norcia, A. W. Young, and A. M. Kaufman, Phys. Rev. X 8, 041054 (2018).
- C. Gross and I. Bloch, Science 357, 995 (2017).
- B. Yang, H. Sun, R. Ott, H.-Y. Wang, T. V. Zache, J. C. Halimeh, Z.-S. Yuan, P. Hauke, and J.-W. Pan, Nature (London) 587, 392 (2020).
- X. Zhang, E. Kim, D. K. Mark, S. Choi, and O. Painter, Science 379, 278 (2023).
- Y.-H. Shi, Z.-H. Sun, Y.-Y. Wang, Z.-A. Wang, Y.-R. Zhang, W.-G. Ma, H.-T. Liu, K. Zhao, J.-C. Song, G.-H. Liang et al., Nat. Commun. 15, 7573 (2024).
- A. Saxena, A. Manna, R. Trivedi, and A. Majumdar, Nat. Commun. 14, 5260 (2023).
- D. E. Chang, V. Vuletić, and M. D. Lukin, Nat. Photonics 8, 685 (2014).
- C. Noh and D. G. Angelakis, Rep. Prog. Phys. 80, 016401 (2016).
- S. Bravyi and R. König, Quantum Inf. Comput. 12, 925 (2012).
- S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, Phys. Rev. Lett. 88, 097904 (2002).
- B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325 (2002).
- L. G. Valiant, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (ACM, Hersonissos, 2001), pp. 114–123.
- S. B. Bravyi and A. Y. Kitaev, Ann. Phys. (Amsterdam) 298, 210 (2002).
- S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
- F. de Melo, P. Ćwikliński, and B. M. Terhal, New J. Phys. 15, 013015 (2013).
- M. Oszmaniec, J. Gutt, and M. Kuś, Phys. Rev. A 90, 020302 (2014).
- S. Bravyi, Phys. Rev. A 73, 042313 (2006).
- N. Maskara, A. Deshpande, A. Ehrenberg, M. C. Tran, B. Fefferman, and A. V. Gorshkov, Phys. Rev. Lett. 129, 150604 (2022).
- A. Deshpande, B. Fefferman, M. C. Tran, M. Foss-Feig, and A. V. Gorshkov, Phys. Rev. Lett. 121, 030501 (2018).
- G. Muraleedharan, A. Miyake, and I. H. Deutsch, New J. Phys. 21, 055003 (2019).
- C. Oh, L. Jiang, and B. Fefferman, arXiv:2301.11532.
- H. Qi, D. J. Brod, N. Quesada, and R. García-Patrón, Phys. Rev. Lett. 124, 100502 (2020).
- V. Shchesnovich, Quantum 5, 423 (2021).
- H.-S. Zhong et al., Science 370, 1460 (2020).
- L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins et al., Nature (London) 606, 75 (2022).
- See Supplemental Material at http://link.aps.org/supplemental/10.1103/rd56-b8tc for a detailed proof of the theorems, which includes Refs. [51–61].
- C. V. Kraus, A quantum information perspective of fermionic quantum many-body systems, Ph.D. thesis, Technische Universität München, 2009.
- J. Surace and L. Tagliacozzo, SciPost Phys. Lect. Notes 54 (2022).
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (MIT Press, Cambridge, MA, 2022).
- M. Fagotti and P. Calabrese, J. Stat. Mech. (2010) P04016.
- R. Hudson, Rep. Math. Phys. 6, 249 (1974).
- M. Walschaers, PRX Quantum 2, 030204 (2021).
- A. Lingenfelter, D. Roberts, and A. A. Clerk, Sci. Adv. 7, eabj1916 (2021).
- P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R. Vrijen, Proc. Natl. Acad. Sci. U.S.A. 99, 3388 (2002).
- L. J. Schulman and U. V. Vazirani, in Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC ’99 (Association for Computing Machinery, New York, NY, USA, 1999), pp. 322–329.
- Á. M. Alhambra, M. Lostaglio, and C. Perry, Quantum 3, 188 (2019).
- O. Shtanko and K. Sharma, PRX Quantum 6, 030347 (2025).
- T. Kuwahara, T. V. Vu, and K. Saito, Nat. Commun. 15, 2520 (2024).
- E. Knill, arXiv:quant-ph/0108033.
- A. Mari and J. Eisert, Phys. Rev. Lett. 109, 230503 (2012).
- C. Cormick, E. F. Galvão, D. Gottesman, J. P. Paz, and A. O. Pittenger, Phys. Rev. A 73, 012301 (2006).
- M. Yuan, A. Seif, A. Lingenfelter, D. I. Schuster, A. A. Clerk, and L. Jiang, Phys. Rev. A 111, 032606 (2025).
- A. Eickbusch, V. Sivak, A. Z. Ding, S. S. Elder, S. R. Jha, J. Venkatraman, B. Royer, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, Nat. Phys. 18, 1464 (2022).
- M. Ben-Or, D. Gottesman, and A. Hassidim, arXiv:1301.1995.
- K. Noh and C. Chamberland, Phys. Rev. A 101, 012316 (2020).
- T. Matsuura, N. C. Menicucci, and H. Yamasaki, arXiv:2410.12365.
- D. Aharonov and M. Ben-Or, SIAM J. Comput. 38, 1207 (2008).
- H. Moriya, J. Phys. A 39, 3753 (2006).
- M.-C. Bañuls, J. I. Cirac, and M. M. Wolf, Phys. Rev. A 76, 022311 (2007).
- E. Liu, E. Barré, J. van Baren, M. Wilson, T. Taniguchi, K. Watanabe, Y.-T. Cui, N. M. Gabor, T. F. Heinz, Y.-C. Chang et al., Nature (London) 594, 46 (2021).
- X. Wang, J. Zhu, K. L. Seyler, P. Rivera, H. Zheng, Y. Wang, M. He, T. Taniguchi, K. Watanabe, J. Yan et al., Nat. Nanotechnol. 16, 1208 (2021).
- H. Baek, M. Brotons-Gisbert, A. Campbell, V. Vitale, J. Lischner, K. Watanabe, T. Taniguchi, and B. D. Gerardot, Nat. Nanotechnol. 16, 1237 (2021).
- Guillermo González-García and Rahul TrivediGitHub repository (2025), https://github.com/guillegg10/Separability_Wigner-negativity.