- Open Access
Yijia Xu (许逸葭)1,2, Yixu Wang (王亦许)3,4,1, Christophe Vuillot5, and Victor V. Albert1
- 1Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
- 2Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
- 3Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- 4[Shanghai Institute for Mathemati…
- Open Access
Yijia Xu (许逸葭)1,2, Yixu Wang (王亦许)3,4,1, Christophe Vuillot5, and Victor V. Albert1
- 1Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
- 2Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
- 3Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- 4Shanghai Institute for Mathematics and Interdisciplinary Sciences, Shanghai 200433, China
- 5Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
Abstract
Continuous-variable cat codes are encodings into a single photonic or phononic mode that offer a promising avenue for hardware-efficient fault-tolerant quantum computation. Protecting information in a cat code requires measuring the mode’s occupation number modulo two, but this can be relaxed to a linear occupation-number constraint using the alternative two-mode pair-cat encoding. We construct multimode codes with similar linear constraints using any two integer matrices satisfying a Calderbank-Shor-Steane-like homological condition of a quantum rotor code. Just like the pair-cat code, syndrome extraction can be performed in tandem with stabilizing dissipation using current superconducting-circuit designs. The framework includes codes with various finite- or infinite-dimensional code spaces and codes with finite or infinite Fock-state support. It encompasses two-component cat, pair-cat, dual-rail, two-mode binomial, various bosonic repetition codes, and aspects of χ-squared encodings, while also yielding codes from homological products, lattices, generalized coherent states, and algebraic varieties. Among our examples are analogs of repetition codes, the Shor code, and a surface-code-like construction that is not a concatenation of a known cat code with the qubit surface code. Code words are coherent states projected into a Fock-state subspace defined by an integer matrix, and their overlaps are governed by Gelfand-Kapranov-Zelevinsky hypergeometric functions.
- Quantum error correction
- Quantum information processing
- Quantum information processing with continuous variables
Popular Summary
Quantum error correction is essential for protecting fragile quantum information from environmental noise. While codes for qubits—the standard two-level quantum systems—are well developed, constructing codes for harmonic oscillators, where each oscillator has infinitely many energy levels, has been piecemeal and limited. Previous approaches often relied on combining qubit and oscillator codes, leaving much of the oscillator’s natural structure unused. In this work, we address this gap by introducing tiger codes, a unified framework for designing quantum codes directly in oscillator systems.
Tiger codes are defined using two integer matrices defining in turn a homology group—an algebraic object capturing the global structure of the system—which determines the logical operations of the code. By extending homology-based methods from qubit codes, which rely on binary arithmetic, to an integer setting, we construct multimode bosonic codes without resorting to concatenation. This approach allows us to exploit the oscillator’s full potential while maintaining favorable error-correcting properties. Importantly, tiger codes provide efficient, linear-algebraic tools for analyzing their robustness, and each code is associated with a unique generating function that captures its performance characteristics.
This framework not only unifies previously scattered examples of oscillator codes but also generates entirely new ones with favorable error-correcting properties and resource overhead. By connecting quantum error correction with deeper ideas in algebra and geometry, tiger codes chart a systematic path for harnessing harmonic oscillators in scalable quantum information processing. Looking forward, this approach may also illuminate the role of oscillator codes in many-body quantum physics, further expanding their potential applications.
Article Text
References (148)
- Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41, 303 (1999).
- Charles H. Bennett and Gilles Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014).
- Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R. McClean, Power of data in quantum machine learning, Nat. Commun. 12, 2631 (2021).
- K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik, Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys. 94, 015004 (2022).
- Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica et al., Quantum Algorithms: A Survey of Applications and End-to-end Complexities (Cambridge University Press, Cambridge, England, 2025).
- Takashi Yamakawa and Mark Zhandry, Verifiable quantum advantage without structure, J. Assoc. Comput. Mach. 71, 1 (2024).
- Stephen P. Jordan, Noah Shutty, Mary Wootters, Adam Zalcman, Alexander Schmidhuber, Robbie King, Sergei V. Isakov, and Ryan Babbush, Optimization by decoded quantum interferometry, arXiv:2408.08292.
- Peter W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
- Daniel Gottesman, Stabilizer Codes and Quantum Error Correction (California Institute of Technology, Pasadena, CA, 1997).
- A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Phys. Rev. Lett. 78, 405 (1997).
- A. Robert Calderbank, Eric M. Rains, Peter M. Shor, and Neil J. A. Sloane, Quantum error correction via codes over GF (4), IEEE Trans. Inf. Theory 44, 1369 (1998).
- Daniel Gottesman, Alexei Kitaev, and John Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).
- P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A 59, 2631 (1999).
- Zaki Leghtas, Gerhard Kirchmair, Brian Vlastakis, Robert J. Schoelkopf, Michel H. Devoret, and Mazyar Mirrahimi, Hardware-efficient autonomous quantum memory protection, Phys. Rev. Lett. 111, 120501 (2013).
- Marios H. Michael, Matti Silveri, R. T. Brierley, Victor V. Albert, Juha Salmilehto, Liang Jiang, and S. M. Girvin, New class of quantum error-correcting codes for a bosonic mode, Phys. Rev. X 6, 031006 (2016).
- Luyan Sun, Andrei Petrenko, Zaki Leghtas, Brian Vlastakis, Gerhard Kirchmair, K. M. Sliwa, Aniruth Narla, Michael Hatridge, Shyam Shankar, Jacob Blumoff et al., Tracking photon jumps with repeated quantum non-demolition parity measurements, Nature (London) 511, 444 (2014).
- Zaki Leghtas, Steven Touzard, Ioan M. Pop, Angela Kou, Brian Vlastakis, Andrei Petrenko, Katrina M. Sliwa, Anirudh Narla, Shyam Shankar, Michael J. Hatridge et al., Confining the state of light to a quantum manifold by engineered two-photon loss, Science 347, 853 (2015).
- Christa Flühmann, Thanh Long Nguyen, Matteo Marinelli, Vlad Negnevitsky, Karan Mehta, and J. P. Home, Encoding a qubit in a trapped-ion mechanical oscillator, Nature (London) 566, 513 (2019).
- Alexander Grimm, Nicholas E. Frattini, Shruti Puri, Shantanu O. Mundhada, Steven Touzard, Mazyar Mirrahimi, Steven M. Girvin, Shyam Shankar, and Michel H. Devoret, Stabilization and operation of a Kerr-cat qubit, Nature (London) 584, 205 (2020).
- Harald Putterman, Kyungjoo Noh, Connor T. Hann, Gregory S. MacCabe, Shahriar Aghaeimeibodi, Rishi N. Patel, Menyoung Lee, William M. Jones, Hesam Moradinejad, Roberto Rodriguez et al., Hardware-efficient quantum error correction via concatenated bosonic qubits, Nature (London) 638, 927 (2025).
- Jeffrey M. Gertler, Sean van Geldern, Shruti Shirol, Liang Jiang, and Chen Wang, Experimental realization and characterization of stabilized pair-coherent states, PRX Quantum 4, 020319 (2023).
- Shubham P. Jain, Joseph T. Iosue, Alexander Barg, and Victor V. Albert, Quantum spherical codes, Nat. Phys. 20, 1300 (2024).
- Aurélie Denys and Anthony Leverrier, The 2t-qutrit, a two-mode bosonic qutrit, Quantum 7, 1032 (2023).
- Christophe Vuillot, Alessandro Ciani, and Barbara M. Terhal, Homological quantum rotor codes: Logical qubits from torsion, Commun. Math. Phys. 405, 53 (2024).
- J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum reservoir engineering with laser cooled trapped ions, Phys. Rev. Lett. 77, 4728 (1996).
- Mazyar Mirrahimi, Zaki Leghtas, Victor V. Albert, Steven Touzard, Robert J. Schoelkopf, Liang Jiang, and Michel H. Devoret, Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16, 045014 (2014).
- P. Zanardi and L. Campos Venuti, Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems, Phys. Rev. Lett. 113, 240406 (2014).
- Victor V. Albert, Barry Bradlyn, Martin Fraas, and Liang Jiang, Geometry and response of lindbladians, Phys. Rev. X 6, 041031 (2016).
- Victor V. Albert, Shantanu O. Mundhada, Alexander Grimm, Steven Touzard, Michel H. Devoret, and Liang Jiang, Pair-cat codes: autonomous error-correction with low-order nonlinearity, Quantum Sci. Technol. 4, 035007 (2019).
- Yijia Xu, Yixu Wang, and Victor V. Albert, Multimode rotation-symmetric bosonic codes from homological rotor codes, Phys. Rev. A 110, 022402 (2024).
- A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996).
- Andrew Steane, Multiple-particle interference and quantum error correction, Proc. R. Soc. A 452, 2551 (1996).
- A. R. Calderbank and Peter W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098 (1996).
- H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65, 042305 (2002).
- T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, Quantum computation with optical coherent states, Phys. Rev. A 68, 042319 (2003).
- Isaac L. Chuang and Yoshihisa Yamamoto, Simple quantum computer, Phys. Rev. A 52, 3489 (1995).
- Isaac L. Chuang and Yoshihisa Yamamoto, Quantum bit regeneration, Phys. Rev. Lett. 76, 4281 (1996).
- Isaac L. Chuang, Debbie W. Leung, and Yoshihisa Yamamoto, Bosonic quantum codes for amplitude damping, Phys. Rev. A 56, 1114 (1997).
- Murphy Yuezhen Niu, Isaac L. Chuang, and Jeffrey H. Shapiro, Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators, Phys. Rev. A 97, 032323 (2018).
- John Horton Conway and Neil James Alexander Sloane, Sphere Packings, Lattices and Groups (Springer Science & Business Media, New York, 2013), Vol. 290.
- J. Michael Radcliffe, Some properties of coherent spin states, J. Phys. A 4, 313 (1971).
- F. T. Arecchi, Eric Courtens, Robert Gilmore, and Harry Thomas, Atomic coherent states in quantum optics, Phys. Rev. A 6, 2211 (1972).
- Jean-Pierre Tillich and Gilles Z.émor, Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength, IEEE Trans. Inf. Theory 60, 1193 (2014).
- Izrail Moiseevich Gel’fand, General theory of hypergeometric functions, in Doklady Akademii Nauk (Russian Academy of Sciences, Moscow, Russia, 1986), Vol. 288, pp. 14–18.
- Izrail Moiseevich Gel’fand and Sergei Izrail’evich Gel’fand, Generalized hypergeometric equations, in Doklady Akademii Nauk (Russian Academy of Sciences, Moscow, Russia, 1986), Vol. 288, pp. 279–283.
- Izrail Moiseevich Gel’fand, Mark Iosifovich Graev, and Andrei Vladlenovich Zelevinskii, Holonomic systems of equations and series of hypergeometric type, in Doklady Akademii Nauk (Russian Academy of Sciences, Moscow, Russia, 1987), Vol. 295, pp. 14–19.
- Izrail Moiseevich Gel’fand, Andrei Vladlenovich Zelevinskii, and Mikhail Mikhailovich Kapranov, Hypergeometric functions and toral manifolds, Funkts. Anal. Prilozh. 23, 94 (1989).
- Alan Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73, 269 (1994).
- Izrail Moiseevich Gel’fand and Mark Iosifovich Graev, Hypergeometric functions associated with the Grassmannian G3, 6, Math. USSR-Sbor. 66, 1 (1990).
- Izrail Moiseevich Gel’fand, Mark Iosifovich Graev, and Vladimir Solomonovich Retakh, General hypergeometric systems of equations and series of hypergeometric type, Russ. Math. Surv. 47, 1 (1992).
- Jan Stienstra, Gkz hypergeometric structures, Arithmetic and Geometry Around Hypergeometric Functions: Lecture Notes of a CIMPA Summer School held at Galatasaray University, Istanbul, 2005 (2007), pp. 313–371, https://link.springer.com/chapter/10.1007/978-3-7643-8284-1_12.
- Alessio Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (CRC Press, Boca Raton, 2017).
- Victor V. Albert, Bosonic coding: Introduction and use cases, in Quantum Fluids of Light and Matter, International School of Physics “Enrico Fermi” Vol. 209, edited by Alberto Bramati, Iacopo Carusotto, and Cristiano Ciuti (IOS Press, NL, 2025), pp. 79–107.
- B.-S. Skagerstam, Quasi-coherent states for unitary groups, J. Phys. A 18, 1 (1985).
- P. D. Drummond and M. D. Reid, Coherent states in projected Hilbert spaces, Phys. Rev. A 94, 063851 (2016).
- J. Klauder and B. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985).
- V. V. Dodonov, ‘Nonclassical’states in quantum optics: Asqueezed’review of the first 75 years, J. Opt. B 4, R1 (2002).
- Jean-Pierre Gazeau, Coherent States in Quantum Physics (John Wiley & Sons, Ltd, New York, 2009).
- A. O. Barut and L. Girardello, New “coherent” states associated with non-compact groups, Commun. Math. Phys. 21, 41 (1971).
- G. S. Agarwal, Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission, Phys. Rev. Lett. 57, 827 (1986).
- Govind S. Agarwal, Nonclassical statistics of fields in pair coherent states, J. Opt. Soc. Am. B 5, 1940 (1988).
- Christopher C. Gerry and Rainer Grobe, Nonclassical properties of correlated two-mode Schrödinger cat states, Phys. Rev. A 51, 1698 (1995).
- Nguyen Ba An, Even and odd trio coherent states: Number distribution, squeezing and realization scheme, Phys. Lett. A 312, 268 (2003).
- Dmitri Maximovitch Gitman and A. L. Shelepin, Coherent states of SU(n) groups, J. Phys. A 26, 313 (1993).
- Kae Nemoto, Generalized coherent states for SU (n) systems, J. Phys. A 33, 3493 (2000).
- Manuel Calixto, Alberto Mayorgas, and Julio Guerrero, Entanglement and U(d)-spin squeezing in symmetric multi-qudit systems and applications to quantum phase transitions in Lipkin–Meshkov–Glick d-level atom models, Quantum Inf. Process. 20, 304 (2021).
- Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, and D. J. Wineland, Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs, Phys. Rev. A 62, 053807 (2000).
- Daniel Gottesman, Surviving as a quantum computer in a classical world, Textbook manuscript preprint (2016).
- Emanuel Knill, Raymond Laflamme, and G. Milburn, Efficient linear optics quantum computation, arXiv:quant-ph/0006088.
- T. C. Ralph, A. J. F. Hayes, and Alexei Gilchrist, Loss-tolerant optical qubits, Phys. Rev. Lett. 95, 100501 (2005).
- A. Yu Kitaev, Quantum computations: Algorithms and error correction, Russ. Math. Surv. 52, 1191 (1997).
- A. Yu Kitaev, Quantum error correction with imperfect gates, in Quantum Communication, Computing, and Measurement (Springer, New York, 1997), pp. 181–188.
- Sergey B. Bravyi and A. Yu. Kitaev, Quantum codes on a lattice with boundary, arXiv:quant-ph/9811052.
- Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill, Topological quantum memory, J. Math. Phys. (N.Y.) 43, 4452 (2002).
- A. Yu Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (Amsterdam) 303, 2 (2003).
- C. Chamberland, K. Noh, P. Arrangoiz-Arriola, E. T. Campbell, C. T. Hann, J. Iverson, H. Putterman, T. C. Bohdanowicz, S. T. Flammia, A. Keller, G. Refael, J. Preskill, L. Jiang, A. H. Safavi-Naeini, O. Painter, and F. G. S. L. Brandão, Building a fault-tolerant quantum computer using concatenated cat codes, PRX Quantum 3, 010329 (2022).
- S. M. Girvin, Circuit QED: Superconducting qubits coupled to microwave photons, in Quantum Machines: Measurement and Control of Engineered Quantum Systems: Lecture Notes of the Les Houches Summer School: Volume 96, July 2011 (Oxford University Press, New York, 2014).
- Arne L. Grimsmo, Joshua Combes, and Ben Q. Baragiola, Quantum computing with rotation-symmetric bosonic codes, Phys. Rev. X 10, 011058 (2020).
- Emanuel Knill, Raymond Laflamme, and Lorenza Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000).
- Debajyoti Bhaumik, Kamales Bhaumik, and Binayak Dutta-Roy, Charged bosons and the coherent state, J. Phys. A 9, 1507 (1976).
- DLMF, NIST Digital Library of Mathematical Functions, edited by f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, https://dlmf.nist.gov/ (Release 1.2.2 of 2024-09-15).
- Victor V. Albert, Lindbladians with multiple steady states: Theory and applications, Ph.D. thesis, Yale University, 2017.
- Patrick Hayden, Sepehr Nezami, Sandu Popescu, and Grant Salton, Error correction of quantum reference frame information, PRX Quantum 2, 010326 (2021).
- Philippe Faist, Sepehr Nezami, Victor V. Albert, Grant Salton, Fernando Pastawski, Patrick Hayden, and John Preskill, Continuous symmetries and approximate quantum error correction, Phys. Rev. X 10, 041018 (2020).
- Debbie W. Leung, M. A. Nielsen, Isaac L. Chuang, and Yoshihisa Yamamoto, Approximate quantum error correction can lead to better codes, Phys. Rev. A 56, 2567 (1997).
- Andrew S. Fletcher, Peter W. Shor, and Moe Z. Win, Channel-adapted quantum error correction for the amplitude damping channel, IEEE Trans. Inf. Theory 54, 5705 (2008).
- James D. Teoh, Patrick Winkel, Harshvardhan K. Babla, Benjamin J. Chapman, Jahan Claes, Stijn J. de Graaf, John W. O. Garmon, William D. Kalfus, Yao Lu, Aniket Maiti et al., Dual-rail encoding with superconducting cavities, Proc. Natl. Acad. Sci. U.S.A. 120, e2221736120 (2023).
- Aleksander Kubica, Arbel Haim, Yotam Vaknin, Harry Levine, Fernando Brandão, and Alex Retzker, Erasure qubits: Overcoming the T1 limit in superconducting circuits, Phys. Rev. X 13, 041022 (2023).
- Akshay Koottandavida, Ioannis Tsioutsios, Aikaterini Kargioti, Cassady R. Smith, Vidul R. Joshi, Wei Dai, James D. Teoh, Jacob C. Curtis, Luigi Frunzio, Robert J. Schoelkopf, and Michel H. Devoret, Erasure detection of a dual-rail qubit encoded in a double-post superconducting cavity, Phys. Rev. Lett. 132, 180601 (2024).
- H. Levine et al., Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons, Phys. Rev. X 14, 011051 (2024).
- Gábor Szegö, Orthogonal Polynomials, online-ausg ed., Colloquium Publications Vol. 23 (American mathematical society, New York city, 1939).
- Linshu Li, Chang-Ling Zou, Victor V. Albert, Sreraman Muralidharan, S. M. Girvin, and Liang Jiang, Cat codes with optimal decoherence suppression for a lossy bosonic channel, Phys. Rev. Lett. 119, 030502 (2017).
- The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.5) (2022), https://www.sagemath.org.
- Raphaël Lescanne, Marius Villiers, Théau Peronnin, Alain Sarlette, Matthieu Delbecq, Benjamin Huard, Takis Kontos, Mazyar Mirrahimi, and Zaki Leghtas, Exponential suppression of bit-flips in a qubit encoded in an oscillator, Nat. Phys. 16, 509 (2020).
- P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A quantum engineer’s guide to superconducting qubits, Appl. Phys. Rev. 6, 021318 (2019).
- Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff, Circuit quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021).
- Matthew Elliott, Jaewoo Joo, and Eran Ginossar, Designing Kerr interactions using multiple superconducting qubit types in a single circuit, New J. Phys. 20, 023037 (2018).
- Alex A. Chapple, Othmane Benhayoune-Khadraoui, Simon Richer, and Alexandre Blais, Balanced cross-Kerr coupling for superconducting qubit readout, arXiv:2501.09010.
- Simon Lieu, Ron Belyansky, Jeremy T. Young, Rex Lundgren, Victor V. Albert, and Alexey V. Gorshkov, Symmetry breaking and error correction in open quantum systems, Phys. Rev. Lett. 125, 240405 (2020).
- Luca Gravina, Fabrizio Minganti, and Vincenzo Savona, Critical Schrödinger cat qubit, PRX Quantum 4, 020337 (2023).
- Caroline de Groot, Alex Turzillo, and Norbert Schuch, Symmetry protected topological order in open quantum systems, Quantum 6, 856 (2022).
- Lucas Sá, Pedro Ribeiro, and Toma ž Prosen, Symmetry classification of many-body Lindbladians: Tenfold way and beyond, Phys. Rev. X 13, 031019 (2023).
- Ruochen Ma and Chong Wang, Average symmetry-protected topological phases, Phys. Rev. X 13, 031016 (2023).
- Kohei Kawabata, Anish Kulkarni, Jiachen Li, Tokiro Numasawa, and Shinsei Ryu, Symmetry of open quantum systems: Classification of dissipative quantum chaos, PRX Quantum 4, 030328 (2023).
- Jinmin Yi, Weicheng Ye, Daniel Gottesman, and Zi-Wen Liu, Complexity and order in approximate quantum error-correcting codes, Nat. Phys. 20, 1798 (2024).
- Shinobu Hosono, Bong H. Lian, and S. T. Yau, Gkz-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces, Commun. Math. Phys. 182, 535 (1996).
- Jan Hrabowski, Multiple hypergeometric functions and simple Lie groups SI and SP, SIAM J. Math. Anal. 16, 876 (1985).
- Emad Nasrollahpoursamami, Periods of Feynman diagrams and GKZ D-modules, arXiv:1605.04970.
- Lev A. Borisov and R. Paul Horja, On the better behaved version of the GKZ hypergeometric system, Math. Ann. 357, 585 (2013).
- Nobuki Takayama, Satoshi Kuriki, and Akimichi Takemura, A-hypergeometric distributions and Newton polytopes, Adv. Appl. Math. 99, 109 (2018).
- I. M. Gelfand, M. I. Graev, and V. S. Retakh, Gamma-series and general hypergeometric functions on the manifold of k×n matrices, Inst. Mat. Akad. Nauk SSSR 64, MR 91j:33004 (1990).
- I. M. Gelfand, M. I. Graev, and V. S. Retakh, Reduction formulas for hypergeometric functions associated with the Grassmannian GNK and description of these functions on strata of small codimension in Gnk, Russ. J. Math. Phys. 1, 19 (1993).
- I. M. Gelfand and M. I. Graev, GG-functions and their relation to general hypergeometric functions, Russ. Math. Surv. 52, 639 (1997).
- Israel M. Gelfand, Mark I. Graev, and Alexander Postnikov, Combinatorics of hypergeometric functions associated with positive roots, in The Arnold-Gelfand Mathematical Seminars (Springer, New York, 1997), pp. 205–221.
- Laurent Freidel and Etera R. Livine, U (n) coherent states for loop quantum gravity, J. Math. Phys. (N.Y.) 52, 052502 (2011).
- M. Calixto and E. Pérez-Romero, Coherent states on the Grassmannian u (4)/u (2) 2: Oscillator realization and bilayer fractional quantum Hall systems, J. Phys. A 47, 115302 (2014).
- Anirudh Krishna and David Poulin, Fault-tolerant gates on hypergraph product codes, Phys. Rev. X 11, 011023 (2021).
- Armanda O. Quintavalle, Paul Webster, and Michael Vasmer, Partitioning qubits in hypergraph product codes to implement logical gates, Quantum 7, 1153 (2023).
- Matthew B. Hastings, Jeongwan Haah, and Ryan O’Donnell, Fiber bundle codes: Breaking the n1/2 polylog(n) barrier for quantum ldpc codes, in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021 (Association for Computing Machinery, New York, USA, 2021), pp. 1276–1288.
- Michael Freedman and Matthew Hastings, Building manifolds from quantum codes, Geom. Funct. Anal. 31, 855 (2021).
- Lane G. Gunderman, Local-dimension-invariant qudit stabilizer codes, Phys. Rev. A 101, 052343 (2020).
- Lane G. Gunderman, Degenerate local-dimension-invariant stabilizer codes and an alternative bound for the distance preservation condition, Phys. Rev. A 105, 042424 (2022).
- Lane G. Gunderman, Stabilizer Codes with exotic local-dimensions, Quantum 8, 1249 (2024).
- Lane G. Gunderman, Beyond integral-domain stabilizer codes, arXiv:2501.04888.
- Saurabh Totey, Akira Kyle, Steven Liu, Pratik J. Barge, Noah Lordi, and Joshua Combes, The performance of random bosonic rotation codes, arXiv:2311.16089.
- Benjamin Marinoff, Miles Bush, and Joshua Combes, Explicit error-correction scheme and code distance for bosonic codes with rotational symmetry, Phys. Rev. A 109, 032436 (2024).
- Ming Yuan, Qian Xu, and Liang Jiang, Construction of bias-preserving operations for pair-cat codes, Phys. Rev. A 106, 062422 (2022).
- Daniel Gottesman and Isaac L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature (London) 402, 390 (1999).
- Shawn X. Cui, Daniel Gottesman, and Anirudh Krishna, Diagonal gates in the Clifford hierarchy, Phys. Rev. A 95, 012329 (2017).
- Narayanan Rengaswamy, Robert Calderbank, and Henry D. Pfister, Unifying the Clifford hierarchy via symmetric matrices over rings, Phys. Rev. A 100, 022304 (2019).
- Jonas T. Anderson, On groups in the qubit Clifford hierarchy, Quantum 8, 1370 (2024).
- Zhiyang He, Luke Robitaille, and Xinyu Tan, Permutation gates in the third level of the Clifford hierarchy, arXiv:2410.11818.
- Christopher T. Chubb and Steven T. Flammia, Statistical mechanical models for quantum codes with correlated noise, Ann. l’Inst. Henri Poincaré D 8, 269 (2021).
- Christophe Vuillot, Hamed Asasi, Yang Wang, Leonid P. Pryadko, and Barbara M. Terhal, Quantum error correction with the toric Gottesman-Kitaev-Preskill code, Phys. Rev. A 99, 032344 (2019).
- Jérémie Guillaud and Mazyar Mirrahimi, Repetition cat qubits for fault-tolerant quantum computation, Phys. Rev. X 9, 041053 (2019).
- Andrew S. Darmawan, Benjamin J. Brown, Arne L. Grimsmo, David K. Tuckett, and Shruti Puri, Practical quantum error correction with the XZZX code and Kerr-cat qubits, PRX Quantum 2, 030345 (2021).
- Martin Ehler and Karlheinz Gröchenig, t-design curves and mobile sampling on the sphere, in Forum of Mathematics, Sigma, Vol. 11 (Cambridge University Press, Cambridge, England, 2023), p. e105.
- Julio C. Magdalena de la Fuente, Tyler D. Ellison, Meng Cheng, and Dominic J. Williamson, Topological stabilizer models on continuous variables, arXiv:2411.04993.
- Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Hypergeometric polynomials and integer programming, Compos. Math. 115, 231 (1999).
- Eduardo Cattani, Three lectures on hypergeometric functions, Notes for a course (2006).
- Frits Beukers, Notes on a-hypergeometric functions, Arithmetic and Galois theories of differential equations, Sémin. Congr. 23, 25 (2011), https://webspace.science.uu.nl/~beuke106/AHGcourse.pdf.
- Kazuhiko Aomoto, Theory of Hypergeometric Functions (Springer, New York, 2011).
- Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner Deformations of Hypergeometric Differential Equations (Springer Science & Business Media, New York, 2013), Vol. 6.
- N. Takayama, A-hypergeometric functions, in Encyclopedia of Special Functions: The Askey-Bateman Project, edited by Tom H. Koornwinder and Jasper V. Stokman (Cambridge University Press, Cambridge, England, 2020), pp. 101–121.
- Thomas Reichelt, Mathias Schulze, Christian Sevenheck, and Uli Walther, Algebraic aspects of hypergeometric differential equations, Beiträge Algebra Geom./Contrib. Algebra Geom. 62, 137 (2021).
- Valentine Bargmann, On a Hilbert space of analytic functions and an associated integral transform part i, Commun. Pure Appl. Math. 14, 187 (1961).
- Irving Ezra Segal, Mathematical Problems of Relativistic Physics (American Mathematical Society, Providence, 1963), Vol. 2.
- Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory (Springer Science & Business Media, New York, 2013).