- Open Access
Andrea De Luca1, Chunxiao Liu2, Adam Nahum3, and Tianci Zhou4
- 1Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, F-95302 Cergy-Pontoise, France
- 2Department of Physics, University of California, Berkeley, California 94720, USA
- 3Laboratoire de Physique de l’École Normale Supérieure, CNRS, ENS & Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- 4Department of Physics, [Vir…
- Open Access
Andrea De Luca1, Chunxiao Liu2, Adam Nahum3, and Tianci Zhou4
- 1Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, F-95302 Cergy-Pontoise, France
- 2Department of Physics, University of California, Berkeley, California 94720, USA
- 3Laboratoire de Physique de l’École Normale Supérieure, CNRS, ENS & Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- 4Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
Abstract
We consider the universal aspects of two problems: (i) the singular value structure of a product Mt=mtmt−1…m1 of many large independent random matrices and (ii) the slow purification of a large number of qubits by repeated quantum measurements. The time-evolution operator in the latter case is again a product of matrices mi, representing time steps in the evolution, but the mi are now nontrivially correlated as a result of Born’s rule. Both processes are associated with the decay of natural measures of entropy as a function of time or of the number of matrices in the product. We argue that, for a broad class of models, each process is described by universal scaling forms for purification and that (i) and (ii) represent distinct “universality classes” with distinct scaling functions. Using the replica trick, these universality classes correspond to effective one-dimensional statistical mechanics models for a gas of “kinks,” representing domain walls between elements of the permutation group. This is an instructive low-dimensional limit of the effective statistical mechanics models for random circuits and tensor networks. These results apply to longtime purification in spatially local monitored circuit models on the entangled side of the measurement phase transition.
- Entanglement entropy
- Quantum circuits
- Quantum measurements
- Group theory
- Random matrix theory
- Replica methods
Popular Summary
Measuring a quantum system reveals information about its state, but the act of measurement can also change that state. Consequently, the way in which repeated measurements extract information about a state is surprisingly rich, especially if the system continues to evolve between measurements. However, when measurements are infrequent, this “learning” process slows dramatically. In quantum physics, this process is called purification: The system’s uncertainty, measured by its entropy, decreases as we gather information. In this work, we show that the slow purification process is universal: It follows the same mathematical pattern for a wide range of quantum systems.
We model purification using products of random matrices, a mathematical tool that here finds new use in quantum dynamics. Remarkably, the complex behavior of a general chaotic quantum system can be mapped onto a simpler model: a 1D dilute gas. In this mapping, the spatial dimension of the gas corresponds to time in the quantum system, and the gas particles, which come in many species, represent relationships (or pairings) between different copies of the system. As time goes on, the gas becomes increasingly sparse, somewhat like the ideal gas limit. In this limit, we can calculate its free energy using combinatorics. This reveals a universal scaling law for how entropy decays in the original quantum problem.
Our findings apply broadly to quantum systems under measurement and give physicists new tools for exploring longtime behavior.
Article Text
References (98)
- H. Furstenberg, Noncommuting random products, Trans. Am. Math. Soc. 108, 377 (1963).
- H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Stat. 31, 457 (1960).
- R. Bellman, Limit theorems for non-commutative operations, I., Duke Math. J. 21, 491 (1954).
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Mosk. Mat. Obš. 19, 179 (1968), https://cir.nii.ac.jp/crid/1571135650268691328.
- J. P. Bouchard, A. Georges, D. Hansel, P. L. Doussal, and J. M. Maillard, Rigorous bounds and the replica method for products of random matrices, J. Phys. A 19, L1145 (1986).
- B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
- Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
- M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10, 041020 (2020).
- M. J. Gullans and D. A. Huse, Scalable probes of measurement-induced criticality, Phys. Rev. Lett. 125, 070606 (2020).
- S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Quantum error correction in scrambling dynamics and measurement-induced phase transition, Phys. Rev. Lett. 125, 030505 (2020).
- Y. Li and M. P. A. Fisher, Statistical mechanics of quantum error correcting codes, Phys. Rev. B 103, 104306 (2021).
- L. Fidkowski, J. Haah, and M. B. Hastings, How dynamical quantum memories forget, Quantum 5, 382 (2021).
- A. Nahum, S. Roy, B. Skinner, and J. Ruhman, Measurement and entanglement phase transitions in all-to-all quantum circuits, on quantum trees, and in Landau-Ginsburg theory, PRX Quantum 2, 010352 (2021).
- G. Bentsen, S. Sahu, and B. Swingle, Measurement-induced purification in large-N hybrid Brownian circuits, Phys. Rev. B 104, 094304 (2021).
- G. Giachetti and A. D. Luca, Elusive phase transition in the replica limit of monitored systems, arXiv:2306.12166.
- B. Derrida and H. J. Hilhorst, Singular behaviour of certain infinite products of random 2×2 matrices, J. Phys. A 16, 2641 (1983).
- E. Gudowska-Nowak, R. A. Janik, J. Jurkiewicz, and M. A. Nowak, Infinite products of large random matrices and matrix-valued diffusion, Nucl. Phys. B670, 479 (2003).
- A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random Matrices: In Statistical Physics (Springer Science & Business Media, New York, 2012), Vol. 104.
- A. Y. Orlov, Hurwitz numbers and products of random matrices, Theor. Math. Phys. 192, 1282 (2017).
- Z. Burda, R. A. Janik, and B. Waclaw, Spectrum of the product of independent random Gaussian matrices, Phys. Rev. E 81, 041132 (2010).
- K. A. Penson and K. Życzkowski, Product of Ginibre matrices: Fuss-catalan and raney distributions, Phys. Rev. E 83, 061118 (2011).
- G. Akemann and Z. Burda, Universal microscopic correlation functions for products of independent Ginibre matrices, J. Phys. A 45, 465201 (2012).
- G. Akemann, M. Kieburg, and L. Wei, Singular value correlation functions for products of Wishart random matrices, J. Phys. A 46, 275205 (2013).
- G. Akemann, J. R. Ipsen, and M. Kieburg, Products of rectangular random matrices: Singular values and progressive scattering, Phys. Rev. E 88, 052118 (2013).
- T. Neuschel, Plancherel–Rotach formulae for average characteristic polynomials of products of Ginibre random matrices and the Fuss–Catalan distribution, Random Matrices Theory Appl. 03, 1450003 (2014).
- P. J. Forrester, Eigenvalue statistics for product complex Wishart matrices, J. Phys. A 47, 345202 (2014).
- K. Adhikari, N. K. Reddy, T. R. Reddy, and K. Saha, Determinantal point processes in the plane from products of random matrices, Ann. l’Inst. Henri Poincaré, Probab. Stat. 52, 16 (2016).
- A. B. Kuijlaars and D. Stivigny, Singular values of products of random matrices and polynomial ensembles, Random Matrices Theory Appl. 03, 1450011 (2014).
- W. Gawronski, T. Neuschel, and D. Stivigny, Jacobi polynomial moments and products of random matrices, Proc. Am. Math. Soc. 144, 5251 (2016).
- P. J. Forrester and D.-Z. Liu, Singular values for products of complex Ginibre matrices with a source: Hard edge limit and phase transition, Commun. Math. Phys. 344, 333 (2016).
- N. Amburg, A. Orlov, and D. Vasiliev, On products of random matrices, Entropy 22, 972 (2020).
- N. Halmagyi and S. Lal, Mixed moments for the product of Ginibre matrices, arXiv:2007.10181.
- J. A. Zavatone-Veth and C. Pehlevan, Replica method for eigenvalues of real Wishart product matrices, arXiv:2209.10499.
- A. Ahn and R. Van Peski, Lyapunov exponents for truncated unitary and Ginibre matrices, arXiv:2109.07375.
- D.-Z. Liu, D. Wang, and Y. Wang, Lyapunov exponent, universality and phase transition for products of random matrices, arXiv:1810.00433.
- G. Akemann, Z. Burda, and M. Kieburg, Universality of local spectral statistics of products of random matrices, Phys. Rev. E 102, 052134 (2020).
- H. Schomerus, Noisy monitored quantum dynamics of ergodic multi-qubit systems, J. Phys. A 55, 214001 (2022).
- A. Chan, A. De Luca, and J. T. Chalker, Spectral statistics in spatially extended chaotic quantum many-body systems, Phys. Rev. Lett. 121, 060601 (2018).
- A. Chan, S. Shivam, D. A. Huse, and A. De Luca, Many-body quantum chaos and space-time translational invariance, Nat. Commun. 13, 7484 (2022).
- S. Shivam, A. De Luca, D. A. Huse, and A. Chan, Many-body quantum chaos and emergence of Ginibre ensemble, Phys. Rev. Lett. 130, 140403 (2023).
- R. Vasseur, A. C. Potter, Y.-Z. You, and A. W. W. Ludwig, Entanglement transitions from holographic random tensor networks, Phys. Rev. B 100, 134203 (2019).
- T. Zhou and A. Nahum, Emergent statistical mechanics of entanglement in random unitary circuits, Phys. Rev. B 99, 174205 (2019).
- C.-M. Jian, Y.-Z. You, R. Vasseur, and A. W. W. Ludwig, Measurement-induced criticality in random quantum circuits, Phys. Rev. B 101, 104302 (2020).
- Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020).
- P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, and Z. Yang, Holographic duality from random tensor networks, J. High Energy Phys. 11 (2016) 009.
- A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8, 021014 (2018).
- C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L. Sondhi, Operator hydrodynamics, otocs, and entanglement growth in systems without conservation laws, Phys. Rev. X 8, 021013 (2018).
- A. Chan, A. De Luca, and J. T. Chalker, Solution of a minimal model for many-body quantum chaos, Phys. Rev. X 8, 041019 (2018).
- T. Zhou and A. Nahum, Entanglement membrane in chaotic many-body systems, Phys. Rev. X 10, 031066 (2020).
- A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum entanglement growth under random unitary dynamics, Phys. Rev. X 7, 031016 (2017).
- I. P. Goulden and S. Pepper, Labelled trees and factorizations of a cycle into transpositions, Discrete Math. 113, 263 (1993).
- J. B. Lewis, V. Reiner, and D. Stanton, Reflection factorizations of Singer cycles, Journal of Algebraic Combinatorics 40, 663 (2014).
- G. Mackiw, Permutations as products of transpositions, Am. Math. Mon. 102, 438 (1995).
- P. Moszkowski, A solution to a problem of Dénes: A bijection between trees and factorizations of cyclic permutations, Eur. J. Combinatorics 10, 13 (1989).
- D. Poulalhon and G. Schaeffer, Factorizations of large cycles in the symmetric group, Discrete Math. 254, 433 (2002).
- V. Strehl, Minimal transitive products of transpositions: The reconstruction of a proof of A. Hurwitz, Hurwitz. S’emin. Lothar. Comb. 37 (1996), https://eudml.org/doc/119294.
- R. P. Stanley, Factorization of permutations into n-cycles, Discrete Math. 37, 255 (1981).
- L. Babai, Spectra of cayley graphs, J. Comb. Theory Ser. B 27, 180 (1979).
- D. M. Jackson, Some combinatorial problems associated with products of conjugacy classes of the symmetric group, J. Comb. Theory Ser. A 49, 363 (1988).
- M. R. Murty, Ramanujan graphs: An introduction, Indian J. Discret. Math 6, 91 (2020), https://mast.queensu.ca/~murty/RamanujanGraphs-IJDM.pdf.
- M. Stone and P. Goldbart, Mathematics for Physics: A Guided Tour for Graduate Students, 1st ed. (Cambridge University Press, Cambridge, England; New York, 2009).
- A. Borodin, A. Okounkov, and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Am. Math. Soc. 13, 481 (2000).
- A. C. Potter and R. Vasseur, in Entanglement in Spin Chains (Springer, New York, 2022), pp. 211–249.
- M. Fava, L. Piroli, T. Swann, D. Bernard, and A. Nahum, Nonlinear sigma models for monitored dynamics of free fermions, Phys. Rev. X 13, 041045 (2023).
- J. Friedman, On Cayley graphs on the symmetric group generated by tranpositions, Combinatorica 20, 505 (2000).
- X. Liu and S. Zhou, Eigenvalues of Cayley graphs, Electron. J. Comb. 29, P2.9 (2022).
- B. Collins, S. Matsumoto, and J. Novak, The weingarten calculus, Not. Am. Math. Soc. 69, 1 (2022).
In the Ginibre model, these are the configurations with the lowest energy; i.e., all other configurations incur a larger power of 1/q in the Boltzmann weight. Therefore, other configurations are suppressed until t becomes of the order of q (at which point the entropy gain from additional kinks can compete with the energy cost). Though we have not proved it, we guess that configurations outside this set are energetically suppressed for t≪q in a larger class of models, given mild assumptions on the distribution of the blocks. 1.
In this approach, we work with a fixed Hilbert space, H⊗2⊗H*⊗2, which is sufficient to express e−S2(t) in a fixed realization of randomness. We then introduce the permutation states by introducing resolutions of the identity in this Hilbert space at each time step: 1=∑σ∈S2|σ⟫⟪σ*|+P⊥. Here, P⊥ is a projector onto the subspace orthogonal to the permutation states. In the present regime of times t≪q, we expect that terms with P⊥ can be neglected [49]. This leads to the rhs of Eq. (60). 1.
A given transfer matrix element such as TI,(12) depends nontrivially on N (for example, the local properties of the effective 1+1D statistical mechanics problem depend strongly on N), but we assume it can be continued to N→1 (if we are considering measurements) or N→0 (if we are considering forced measurements, or a network of random tensors).
- Y. Li, S. Vijay, and M. P. A. Fisher, Entanglement domain walls in monitored quantum circuits and the directed polymer in a random environment, PRX Quantum 4, 010331 (2023).
- M. P. Fisher, V. Khemani, A. Nahum, and S. Vijay, Random quantum circuits, Annu. Rev. Condens. Matter Phys. 14, 335 (2023).
- P. Le Doussal, S. N. Majumdar, and G. Schehr, Large deviations for the height in 1D Kardar-Parisi-Zhang growth at late times, Europhys. Lett. 113, 60004 (2016).
- S. K. Lando, in Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures (World Scientific, Singapore, 2010), pp. 2444–2470.
- B. Dubrovin, D. Yang, and D. Zagier, Classical Hurwitz numbers and related combinatorics, Moscow Math. J. 17, 601 (2017).
- W. Fulton and J. Harris, Representation Theory: A First Course (Springer Science & Business Media, New York, 2013), Vol. 129.
- S. R. E. Ingram, Some characters of the symmetric group, Proc. Am. Math. Soc. 1, 358 (1950).
- J. Dénes, The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci 4, 63 (1959), https://real.mtak.hu/200901/1/cut_MATKUTINT_4_1_1959_pp63_-_71.pdf.
- T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Inventiones Mathematicae 146, 297 (2001).
- I. G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford University Press, New York, 1998), https://books.google.com/books/about/Symmetric_Functions_and_Hall_Polynomials.html?id=srv90XiUbZoC.
- A. Borodin, Determinantal point processes, arXiv:0911.1153.
- M. L. Mehta, Random Matrices (Elsevier, New York, 2004).
- J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the second row of a Young diagram under Plancherel measure, Geom. Funct. Anal. GAFA 10, 702 (2000).
- P. J. Forrester, Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–1883, Random Matrices Theory Appl. 08, 1930001 (2019).
- A. Zabalo, M. J. Gullans, J. H. Wilson, R. Vasseur, A. W. W. Ludwig, S. Gopalakrishnan, D. A. Huse, and J. H. Pixley, Operator scaling dimensions and multifractality at measurement-induced transitions, Phys. Rev. Lett. 128, 050602 (2022).
We thank an anonymous referee for pointing this out.
- M. Szyniszewski, A. Romito, and H. Schomerus, Universality of entanglement transitions from stroboscopic to continuous measurements, Phys. Rev. Lett. 125, 210602 (2020).
- A. Nahum (unpublished).
- A. Christopoulos, A. Chan, and A. D. Luca, Universal distributions of overlaps from unitary dynamics in generic quantum many-body systems, arXiv:2404.10057.
- D. Gross, S. Nezami, and M. Walter, Schur–Weyl duality for the Clifford group with applications: Property testing, a robust Hudson theorem, and de Finetti representations, Commun. Math. Phys. 385, 1325 (2021).
- Y. Li, R. Vasseur, M. Fisher, and A. W. Ludwig, Statistical mechanics model for Clifford random tensor networks and monitored quantum circuits, Phys. Rev. B 109, 174307 (2024).
- L. Leone, Clifford group and beyond: Theory and applications in quantum information, Ph.D. thesis, University of Massachusetts Boston, 2023.
- U. Agrawal, A. Zabalo, K. Chen, J. H. Wilson, A. C. Potter, J. H. Pixley, S. Gopalakrishnan, and R. Vasseur, Entanglement and charge-sharpening transitions in U(1) symmetric monitored quantum circuits, Phys. Rev. X 12, 041002 (2022).
- V. B. Bulchandani, S. L. Sondhi, and J. T. Chalker, Random-matrix models of monitored quantum circuits, J. Stat. Phys. 191, 55 (2024).
- R. P. Stanley, Some combinatorial properties of hook lengths, contents, and parts of partitions, arXiv:0807.0383.
- G. Olshanski, Plancherel averages: Remarks on a paper by Stanley, Electron. J. Comb. 17, 16 (2010).
- A. Hurwitz, Über riemann’sche flächen mit gegebenen verzweigungspunkten, Math. Ann. 39, 1 (1891).
- R. P. Stanley, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics Vol. 2 (Cambridge University Press, Cambridge, England, 1999).