A wet film of cellulose, composed of cellulose-producing bacteria Komagataeibacter rhaeticus and Bacillus spores. Credit: Jeong-Joo Oh, Aubin-Tam Lab
Bacterial spores—the hardy survival structures formed by certain bacterial species—are proving to be a game changer in the field of engineered living materials (ELMs). By embedding Bacillus spores within ELMs, Jeong-Joo Oh, Franka van der Linden, Marie-Eve Aubin-Tam and their fellow researchers have created living materials that not only endure harsh environments but c…
A wet film of cellulose, composed of cellulose-producing bacteria Komagataeibacter rhaeticus and Bacillus spores. Credit: Jeong-Joo Oh, Aubin-Tam Lab
Bacterial spores—the hardy survival structures formed by certain bacterial species—are proving to be a game changer in the field of engineered living materials (ELMs). By embedding Bacillus spores within ELMs, Jeong-Joo Oh, Franka van der Linden, Marie-Eve Aubin-Tam and their fellow researchers have created living materials that not only endure harsh environments but can also be programmed to perform specific tasks.
In the future, these materials may be a sustainable replacement for fossil-based materials. Their findings are published in Science Advances.
These autonomously grown ELMs have a broad range of potential applications, such as detecting disease biomarkers and catalyzing the breakdown of environmental pollutants. They might also function as self-healing composites. In the future, this latter application may be used for building materials, similarly to the self-healing concrete developed by TU Delft colleague Henk Jonkers.
“Imagine asking bacteria to produce minerals that fill a crack in concrete, we could have self-repairing walls,” explains Jeong-Joo Oh, first co-author of the article. “Moreover, this approach could advance sustainability, since ELMs could replace fossil-based materials, like plastics, in our daily life.”
Unique to these new materials is their on-demand programmable functionality. The ELMs can sleep, survive harsh conditions, and awaken on command. “Conventional living cells are able to perform useful functions like detecting biomarkers, but they only survive for a short time. We wanted a material we could use whenever we want to,” Oh says.
Credit: Jeong-Joo Oh, Aubin-Tam Lab
Inspired by bacterial life cycle
“So, we looked for a way to keep the cells alive and got inspired by the life cycle of bacteria.” Certain bacterial species can switch into a dormant and metabolically inactive state, called a spore. Spores are extremely resistant to heat, dryness, and chemical stress.
“This dormant state allows us to ‘wake up’ the bacteria when the programmable functions are desired,” Oh says. “Using normal bacteria, you can only use the material within a few days or a week. We found out that with spores it still works after six months without losing functionality.”
Two species collaborate
To fabricate the material, the scientists combined two bacterial species: Komogataeibacter rhaeticus and Bacillus subtilis. K. rhaeticus produces strong bacterial cellulose fibers that act as a protective physical barrier. Bacillus contributes its spore-forming capacity.
The mixture yields a robust living material. By genetically modifying the bacterial spores’ surface, the team added the needed functionality. Also, the genetic engineering step enhanced the spores’ binding to the cellulose.
Step by step to real-world use
Before these materials appear in our daily life, the ELMs’ performance and long-term stability should meet standards of existing materials.
“At this stage, our work is at a proof-of-concept level in the laboratory,” Oh notes. “To use these materials in concrete, for instance, they should match the strength of existing building materials. But the results are already very promising. Step by step, I hope to replace unsustainable materials with living, self-sustaining ones.”
More information: Jeong-Joo Oh et al, Bacterially grown living materials with resistant and on-demand functionality, Science Advances (2025). DOI: 10.1126/sciadv.adw8278
Citation: Engineered living materials with bacterial spores show promise for self-healing and sustainability (2025, November 11) retrieved 11 November 2025 from https://techxplore.com/news/2025-11-materials-bacterial-spores-sustainability.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.