Contents
Introduction
Intelligent systems need perception to understand, predict, and navigate their environment. These sensory capabilities reflect what’s useful for survival in a specific environment: bats use echolocation, migratory birds sense magnetic fields, Arctic reindeer shift their UV vision seasonally. But when your world is made of text, what do you see? Language models encounter many text-based tasks that benefit from visual or spatial reasoning: parsing ASCII art, interpreting tables, or handling text wrapping constraints. Yet their only “sensory” input is a sequence of integers representing tokens. They must learn perceptual abilities from scratch, developing specialized mechanisms in the process.
In this work, we investigate the mechanisms t…
Contents
Introduction
Intelligent systems need perception to understand, predict, and navigate their environment. These sensory capabilities reflect what’s useful for survival in a specific environment: bats use echolocation, migratory birds sense magnetic fields, Arctic reindeer shift their UV vision seasonally. But when your world is made of text, what do you see? Language models encounter many text-based tasks that benefit from visual or spatial reasoning: parsing ASCII art, interpreting tables, or handling text wrapping constraints. Yet their only “sensory” input is a sequence of integers representing tokens. They must learn perceptual abilities from scratch, developing specialized mechanisms in the process.
In this work, we investigate the mechanisms that enable Claude 3.5 Haiku to perform a natural perceptual task which is common in pretraining corpora and involves tracking position in a document. We find learned representations of position that are in some ways quite similar to the biological neurons found in mammals who perform analogous tasks (“place cells” and “boundary cells” in mice), but in other ways unique to the constraints of the residual stream in language models. We study these representations and find dual interpretations: we can understand them as a family of discrete features or as a one-dimensional “feature manifold”/“multidimensional feature” .All features have a magnitude dimension; so a discrete feature is a one-dimensional ray, and a one-dimensional feature manifold is the set of all scalings of that manifold, contracting to the origin. See What is a Linear Representation? What is a Multidimensional Feature? In the first interpretation, position is determined by which features activate and how strongly; in the latter interpretation, it’s determined by angular movement on the feature manifold. Similarly, computation has two dual interpretations, as discrete circuits or geometric transformations.
The task we study is linebreaking in fixed-width text. When training on source code, chat logs, email archives, scanned articles, or judicial rulings that have line width constraints, how does the model learn to predict when to break a line? Michaud et al. looked for “quanta” of model skills by clustering gradients . Their Figure 1 shows that predicting newlines in fixed-width text formed one of the top 400 clusters for the smallest model in the Pythia family, with 70m parameters. Human visual perception lets us do this almost completely subconsciously – when writing a birthday card, you can see when you are out of room on a line and need to begin the next – but language models see just a list of integers. In order to correctly predict the next token, in addition to selecting the next word, the model must somehow count the characters in the current line, subtract that from the line width constraint of the document, and compare the number of characters remaining to the length of the next word. As a concrete example, consider the below pair of prompts with an implicit 50-character line wrapping constraint.The wrapping constraint is implicit. Each newline gives a lower bound (the previous word did fit) and an upper bound (the next word did not). We do not nail down the extent to which the model performs optimal inference with respect to those constraints, rather focusing on how it approximately uses the length of each preceding line to determine whether to break the next. There are also many edge cases for handling tokenization and punctuation. A model could even attempt to infer whether the source document used a non-monospace font and then use the pixel count rather than the character count as a predictive signal! When the next word fits, the model says it; when it does not, the model breaks the line:
![]( KDIIGBFQEEUUEAgBGQwSpmBQJGEQiIDBmDCIzGgwCUkggIqJKCCIjDIKCBFQZpUxDAIBo4AoIcos w/79P1vr/uuuu/fpc7pvd27ffr/PU8+93b3PPrWrVq2qWm9V7e8aQgghhBBCCCGEEEIIIYQQQggh hB3Od9VfhBBCCCGEEEIIIYQQQgghhBBCCDuNiOchhBBCCCGEEEIIIYQQQgghhBB2PBHPQwghhBBC CCGEEEIIIYQQQggh7HginocQQgghhBBCCCGEEEIIIYQQQtjxRDwPIYQQQgghhBBCCCGE84lvfvOb w3//938P55133nDuuecOX/ziF4cvfelLwze+8Y16aQghhBBC2GQinocQQghr8J3vfGcybRZf/epX h0984hPDWWedtSt9+MMfHj7zmc+MQZUQwvaG/xAQ7du49LGPfWwMlm6mf2l861vfGj7+8Y/vkYdP f/rT8TPnA9/+9reH//zP/9yjPtTRf/3Xf9XLQ9iraPOf+9znho985CO72d8nP/nJUbipPon/+MpX vjL6MfZJ2KnXhOVR/p///OfHPqC2f0La/lS2X//614dPfepTuz2nMe6//Mu/RCAM6+Z//ud/hs9+ 9rPDRz/60T3aEF+1r7Yh+ZJ3Yz9zv7/9278dTjjhhOERj3jE8Bu/8RvDwx/+8OGUU04ZXvrSl47P ds4554zCOh98fuL79Q1f+MIXxvx4hn0VfVQdWylL/VdFffBDbfHCl7/85fFZ91X7CSGEEMLmEvE8 hBBCmMFEWZCPoPEf//Efu6WpYPLe4u///u+HH/3RHx2+67u+a1e68IUvPNz73vce/u3f/q1eHkLY ZhBK/uRP/mS3Ni59//d///AHf/AHWxKE/Pd///fhmte85vDd3/3du+Xh53/+50cRJ2wtgrhPfvKT 97CJH/mRHxn+/M//vF4ewl7F2IJQ8z3f8z272d9P/uRPDq985St380kW+H3oQx8a/vRP/3R43OMe N/z+7//+8LrXvW70GxaBhNVR/r/927899gF9+V/jGtcYRTNlvr/wgQ98YLjlLW+523Ma497mNrcZ F2uEsB4svnjwgx88XOYyl9nNtn74h394ePOb37xPLgpsCynf+ta3jiK59n7AAQfsMQ6QjNUudalL Dbe4xS1GMd3znl+YG2vHxqsPe9jDhuOPP34U/QnO+yLPfe5z9yjPy172ssMf/dEf7TaXJ5Lrx97w hjcMv/d7vzc88pGPHM4444zxWS3ACCGEEMLOI+J5CCGEMINg8fvf//5xAv34xz9+V3riE584vOxl Lxu+9rWv1Y/sFSKeh7B/E/E8VCKeh/OTZcVzvus973nPcOSRR+4mUl3nOtcZnvWsZ427EMPqRDyP eB42xnYTz4m2Fmf/2Z/92XDjG994uNCFLrRbvueS6252s5sNb3/72+sttwQLpJwUcfe7331st/Jk HPkDP/AD47PsiwuolhXP7TQ//fTTh+te97rDBS5wgfG5XHfPe95zeMc73nG+7/YPIYQQwtYT8TyE EEKYgZjh6LyLXOQiu0247Qo45JBDxp1Xm0HE8xD2byKeh8p2Es/biSzspCU/25m1LwbOw9osK547 deeP//iPR7vsryPo3OlOdxoXHG427VQgQkdvg04FcsTudrTB7SqeqwtlXv2BRRTqaOqEpojnYTPY buK59kHU/Ymf+Inhghe84G55XpTMSe94xzsubCvaHZ9R26Wf/X6qXS6LciSS2wXf54vY/LM/+7Pj ayb2NZYRz/3rKPfDDz9816KAlg488MDhmc98Zl6hE0IIIexAIp6HEEIIE5hEe/fkbW972z0m3MQm 4rYjSzdD5Ip4HsL+TcTzUNku4rmdVxaOnXrqqbudyHLyySePAgVxNWw/lhXPiQfPeMYzRlG3v45w 4jjhd73rXeXOex95sfOR8NHboPbjuN19VWhexHYVz+XrzDPPHE466aTd6oJ/eN/73jcpWEY8D5vB dhPP+bCDDz54D6FWusQlLjFc5SpXGcdo0tWvfvXhSle60vC93/u9wyUvecnhvve970Kf4GQ0vvgp T3nKbu3yqU996riDetFn14L/ffrTnz5c9KIX3aMPuP71rz+OLfc1lhXPjW0sTPAs/bVXu9rVxsX0 FmiFEEIIYWcR8TyEEEKY4Bvf+MYYMBakqBNuSXDm6KOP3hQxO+J5CPs3Ec9DZbuI5/pGry2xW+5y l7vcruTYbsHlfTFwHtZmWfHcbsm//uu/Hv1EfyrPpS996eFBD3rQ8IlPfKLcee9D+Hn1q189HHTQ QbvZIIHpMY95zLYUOLareM5veef9ta51rd3qgoj2ohe9aLSXSsTzsBlsN/HcApMrXOEKu+VV+r7v +77hPve5z3DaaacNf/EXfzEmO70J4Q984AOHQw89dPzbIuz+NsZ0/HjfLvnzP/zDPxxP7VgvTvbw fnNtvn8/u/nyUUcdNY4R9jWWEc/BD3vPuTpoY2O+6SY3ucnw4he/eNNe1xZCCCGEfZeI5yGEEMIE BABBmDrZbknQWKDPjpu9fURoxPMQ9m8inofKdhHPiWGC+XZiVdt93OMeN3z2s5+tHwnbgGXFcxCn iTl3vvOdhxve8IbDjW50o+HXfu3Xhre97W1bIpx4PQBB+QY3uMFueXWM8G/91m9tywUc21U8J8LZ 0VpFwKte9aqjYBXxPGwV2008P+yww/Z4LZifH/GIR4w+TJvnTyXtiN/T3v71X/91fNZFOCHEWNJ7 yPv7W2B0yimnjMe3bwSvZSD+3+pWtxp+6qd+auwDCP5nn312vXSfYFnxXFm/5z3vGe3IEfSe7Q53 uMO40/6cc87Z0HH3IYQQQtieRDwPIYQQCsRwk2dBhjrZbong5O+OwNvb73eLeB7C/k3E81CJeB7O T1YRz0Fk+NSnPjUK5sZL7HeriHi+7xDxPOwrbCfx3A5mgnOfT8mYjC/YqEi72eI5PMM///M/D299 61uHd77zncOXv/zlesk+w7LieUP5Ofbes3nGfcl2QgghhLC1RDwPIYQQCt7Z6ki8fpJNYLrgBS+4 m9DkmNL73//+w0c+8pHJyfd62Yh4Lh+C3Cb+giOf+9znRjGDGCbIKejsnbWLsHhAUEQgpCWf63eU ucaiAd/h/r7H/1276k58+XF/OxncR7Kzrb+XawSP+zzJY/9dnr3mW/K5uTxNfUZeBHznPtNon1Wu yrfl3f/PO++88W/rsQvfKx+1/tilv7mnQI589vleJs/w+baDhcjg/v5V/r5jbwWJmi3W+ujz6Ro/ E17kodV9y0ctv1bmyreVuc/5/Hp2PPbtxff25e2e1caWpeXTPdzzM5/5zHhP3+O5Niqeu7/n1Qbl u7XBlm9lWsuushnieWvLfX33ZdjqW/21+m71t0yep+jtRzk3G1LWynE99+ztUln0Pk6ZK/tV79ts Qjtzz9bmlJFy24h4rnz5udamlYN/lYOyXtY3zNH7HN9h17H3sfb5vOIVrziKf47tbn50kS9pbU95 9r6/9VXr9Z9zeH7lUH19sxFJGcqLspPUN1+0Vp/Z6rbeu/mkVj/Np/t3kRjat5O+ffu/8lqPXbc8 KttW1n0/u4p4PtUft+ddJl/swmdaWTef62f3mbpHsxefc+0LXvCC8WjwPq/eB/yQhzxkFGBdJ49r 1V3P1HNJc32LcuvrvY6Teqbsr93bsy0jnrvOd+yNcRd6v9H8XG/3i9qvfMuLXbC/8zu/M1z+8pff Ld9XvvKVhzPOOGOXj+vtfRnxXF2w9drPr7ef8CyeqY6rPHsr20XUuq71Lb9+18YRvsf1y9LKs7// orFrHQP6rilb7313vfei+m3tTZm1dtrqoZXZXN56lvGNzabXKrfaz7Xrfd7fNiKeV/9fxxLrtbue 3r9YeOTVJ30+pZvd7Gbj3/p6avXq+/ty7Ove3/q6Zt8Wd1d/8kM/9EPjaxaUVb3/Kijvmg+p+r9W rv018teXZ2s76rKvV79bT96mWFY89/+5tljnJH6eera+vtyL/fTjMjbm+Vel3a8fF0gbsdFWP/1Y t40d/a732yGEEMJOJeJ5CCGE0GEiKXjnmLZ+kn2JS1xiDMD070Anpv/cz/3c8KpXvWpNsWsV1iOe C2QINH70ox8dzjzzzFHcsLvAjiDvAP293/u94ZnPfObw8pe/fHjf+943Tt7nghL+9nd/93fje229 400SvH3/+98/BgtMqP3/+c9//vgdj370o8cdhyeddNLwl3/5l8MHP/jBpXbj+35BsPe+973jdwj0 POEJTxge+9jHDieeeOJ4L9/jmrPPPnt43etetys/0hvf+MbdvkdQQdnJa3/d61//+jEQM4VAh6Ba f73ntptubiedfCujD3/4w8NrXvOa8f2BRC/5lvyfMOpvZ5111hjoWCbICNcKLHt2RyIqV/f0LmG7 PZWtoMbHP/7x8f59nj27fM0hD8pSntjBM57xjOF3f/d3x/pT7haMvPCFLxzvI8izUZtmK3Zs9GUr sS1lq+w9h3oVwHriE5845kPds613vOMd47M2O3U/duB9u3/8x388HH/88WPZeAZ1wB4EBOfsuqcF jNzPzhKBNfbb6lB5+47Xvva1Yz0LTC1bhwJYgp8+67k806Me9agxYPmnf/qn4w4d9UBYqMG8ZcRz dk6weMtb3jK2c+WljWvrbM93snllL5g3F0wTINvb4rl8veIVr9itvr0bUz16pk9/+tNj3pStelPW T3rSk3bVH/+26Nl7lDOh1ueaPRBxlIO6fM5znjN+t7qYC8ZXlBWxgF22fCrT5uO8c9R9fad+YhmB 19+bresrHP/p2eVTG3/JS14y+jm2u6p4zia1eT69b9PKQbmyjWc/+9ljG/vYxz627kCoNiV/8s8P HXPMMXuIZQSLX/qlXxpOP/30sd7ZwdzRsuqYj+FrPNvTnva0sZ0oY32VMvJO6w996EOzfnhV3Oft b3/7bv0aUdh3KEO25PlaXtTPySefPIq0dlaz4TkfwBan+pF/+Id/GNsrW/mrv/qr8X6eUV/HD0zB /tTV3/zN34w+gt9gf82u+Spt3xGyVaiYg53yB/oMz+derc+WVz7O2IHwvJZ4rgzU3Zve9Kbdnle/ +0//9E+jrc/Bh/M7+ld9jT6HnXo+9e5n5SY/dQzhs+pIe2Ezxx133B6nA13sYhcbx27NBrVTeV2r jTb4Pc/lO/pn81y17t2TTamLvs7f/e53T36fa/V9/X0l9qd9LRLP5Ufe1JFy5je08eaTjBf+8R// cen27VmMNXy3dtp8kn5EP+z+7F49ydeUnRm3eV590OGHHz7u+u/z7Z3BFmO4j+dke60MF4nn/KT+ 0fOoZ/bvOVs/r//XnqbyNAW7ZXPaG9/VxlWe1T2Ni5WBslAmU6hPY4Baf3yuNq59abPqic91f76Y X14Wi3C1s/7+xhDGrlP25Pt8v+t8r/6KrVc8f+t72n1dz7/or6fwGSIaf6n+Wjtt/tmzyat6lL/a Nnr4A/1w/1ytnahDYzDlzzcaD7BFZVoxlmH/rQ9t/YU5iOcxruU3HvSgB60knsu7tmls3dqCNqAt yg8faTz/hje8YdfCsPWiLbV5jHtq230+JQuC/K23AWIylFf1TfyBMay/eT7jHX2NfuIBD3jAKBD3 97fIzVzSWNTntSd1vSraaN+Xtrxotz1Tcyz5a32FNuf/fJi6VK+S/7tWG9L2ptrAKiwrnssT+6vP pn0Zv7b5BbvRB/t9fx37VF/qQn17dmMw7cY8gM/RfvRN2t+UTVbafIXf8znjAnMUPoyN6gN8hzat rS/qgxvuqey1GXnmW42h21iD3/U7f3PNnG8MIYQQdgIRz0MIIYQOAQiTRUdOtgk2cYnI5J2eAskH HHDArr9d7WpXGyeZ6xWbplhVPDf5NqkX5HrgAx84voPuOte5zrjzRxBJUJPQIdDsHW73ute9hmc9 61ljsG5q9bsgoiD6jW984/F9b+19dp5TwM4k/Vd+5VeG613vesMP/uAPjru9fMeVrnSlsXzkU2Bc cGUOwTmBAPf61V/91fE77GQUzHAvAWRHsrqXawQ473jHO+7KjyQP7tEQYHFk68/8zM/sdp3A7lwQ U9BImfXX3+QmNxmOPvrosRwqysvvBVzue9/7josnBOYcWSrfTiPw/2td61rj31zzvOc9b6y3RQFG CHoJihxxxBFjOao/9+zL4373u99YdwLAt7vd7XblWV099KEPnX1OwV3BRfdXpsqIPQhwqz/lzubt hPmFX/iFMdAjgDRlH8viOwXE+rKVlDfBQdDuN3/zN8cgujKUB/bqmEm2dde73nXMrwCTYJBA7sMf /vDh5je/+SgotjL3DD5/8MEHj4KCIOgiAVbQiBAmgHfssccOt73tbYfrXve64/f25X3ggQeO3yW/ 6pCtLbovBFYFywReDzrooNFvsImLX/ziY9BSu7zTne402rSgbA3mLRLP5ZvIR9wRXCQSuZ98q8Nm e8pCmbJhwWC+acr2NkM8F7zz3X198zcCz4QYgT7+SdmqN2V9uctdbsyHeuBj1N9awoiAveA9+2n3 4+MsclIOykSdaiPqwoKiKsZV+FFirwBws0v3VaatfPm7H/uxHxv/xnY8l6DiXGDX7+WVrakP7dTO L8/O1rVxvlW7Zuvsu9rEnHiuTvljAU4+tG/TykF7Ug76ErvZiAr8MrFiLr9z8AOCxLe//e1H3yTo r0/q83mhC11o7AO0XfWuPRIKKspLGxFE5tNdz/f0fZUy4oePPPLIcQGDgPBG0d95l6z7NtuURwsW +KmHPexhYzm1vEjqm5hxt7vdbRS8iSdTbckz/fqv//oe/QjbszDC96p79/OMbFMAvacJqPKirtiY foTfYH/NN7K/Qw45ZBSO+FF2vag++SRtxY7Mm970puOYxb3Ys/r66Z/+6eGoo44a86NPJUD39VrF c/8SEfUj/fN6PmU5JeBB8J9gxu8deuih433lhZ16Pnbr5/buXItU+uNyfV7blF99IRuseTU2015/ /Md/fMyTdkFYWmZBFfj4/l23LSlr44se99TfymtfBuxoytcQm40Hqo0QddjUnHiuTWvj+iD1pHyM lSzkbHWoLL0/mXizlrinLStX4pn89D6pjQXcn93/4i/+4igkOr64CvN8NXsyZmDX2n+fb/5B3uXN s/IdrS7nxHPtUR+izd/jHvcYfQP795zyp5+4xS1uMbYneVrUT2gT6sEiPDanDbMbPtf9PKu+p42L 2QofPDXGVj/avnFxrb9HPvKRo/in7vhgbdT9lZ8yXhZinXbd3//Wt771KPpPCWwWwTRfdsMb3nAc D2in1T/xTfKh3Np92ZC6VzYVZaavVr93uctdxufQLpVVqwdlxm6MVeXD2HKujRESzZ365/JZY3Wi nLZlrNzqRZ0b4zbUo/GIhQLNh7FXdup6n/P8fKbP3fOe9xx/39vWnHguzwR59qb+2UF7VmO21r70 oWzTYpAXvehFYx8697yLsIiAHSoD5VoXKkns0t9aWRkvqg+oS/6vL0s259n9TRs11lDXbN2z1Hbp neqtfbf785GrYh7U96UtL/r1HnOs2jfKn8UY2g0/r87anKfNA/zftWzMggFj9kX93FosK56zV/0Y O+vzfPe7331cyND6QbZkTGTBYH0240J9nXmUNn3ta1971/iUbbFfbZtIrQ9ZZEtt3C8uYczpc8YF +ol+7u072Kh5oGsXLaRu829lr21qf3yrPOpXlH+bS2irxmHmLDm+PoQQwk4l4nkIIYTQYQcCAUPg pA/qCfSZfBPSLnrRi+76m+t++Zd/eQyM1qDVellFPG+7e032BVVMzmuAoE+EMnkWOGmB/ToZNukX 6Oyf0+cE5wQtBUv7v9X7ywMRQiB3SgT0fUQfQRYBHgGkKuC15F6+z+Re0KH/m98L2jXUnUBQDRZ5 VsLrFBYdCDj013s2AQ/B2R5BZzsQ7XgjYEwFvvrUylqgUoBxkYAukKFsBUXm7ut+AhueR5Cq3+kl z0RvtlMhYvs9QVBgcu7+LREgCEhEAUG7RQHqRRC8CTL1/vIv2EfYFLy6wAUusMc1kiCfYKZdOALL FkEIpM9dr3wElAS4BUSnAm3KXzCPQC04xqbm7if5mwCVoJhdI4L+tb00/J5YKOAsH/0imz6xT/VQ T7eQ5sRzz0KUEhxWboJl1c5rvpUtv+V+Ao+VzRDPBZbrTicCv/oWfCSyOLGj5lfyPAQxu2ksJJlr K9oRf6ddLbIfSR0QM/gFwrFdvVM0Idp9+a617isREfgJfm5OQCe4CVC6Zw3ot9RsjP92Xf37lHgu vxa32AGufImItR5r4i+Iivo35bsKgvJE3X5R2VpJGVrQ1WMhgSAsXyU4XgX4mjwXn0g0mfPhyyJQ L9DdC678s+CwPoCdLGqzBCM+gK+utum57JrtP+PZ3FvAu/otz06MbwieE+fsJuPz2MOi+tSGml1b IDO300y9sT++ru4Mbkm+mtjHlqpfqeK5/oCI4J79dfog7ZywVPEZoiiBSjmuVe/6KD5Sn9V2fROF 7Sifq6OpRFQjJMz57IoxBLGm9pHauXFWj/JQ9tpnu07ZEU/0ExUnKfTXSkQUp6xgTjznZyw2WMsu fLd+yv3mnlc92BlqDKO+ja/m7iexM0KbxT3Ex97O1HVdvLAo8f3NhqbEc99l3GvcYXw159PYq/ZE 0CH+1rbYIAK3cQObM56o9+qTv/te49J6Yob2aVGXvrfmmd8mBCunvo3ro+1iXhbCqkU1/f21Ez60 LmLUj1lc2PpS5WQsI+/9Igd9ksWHfFDfrt33zne+8zj+72H/+jMCL1+/VpmpI2VrXsQ+aj6hLC0k 7D8n38b+/Knv6cuNndh13DBOMe7RrvipKZvwO/2NMQG/Ue1yTjxvp22wu7k5TUvyyIf6DmMUwv8i 0XMKCwCInPXeixKfYaEp9DPV/6lXfU875twCEH6i3mcuKRs+clXME2s5y4tFGT3qv7Yb/a7FkhYa 8dHV37bU5pPGC3zt3PhtGZYVz9vR/3UuzTfwrc3G+TInWRhT9dcpA/5AP2Lxwlxf18am/OjcyWht 4Yh5FPtfZr5C+DaGdyLI1DiezZo3P/axjx37i7X6AEk9803aCrF/zueGEEII+ysRz0MIIYT/w4RQ gEwgvZ+gCtjY8eNvdij04pBJp8k/0ajuzFkvy4rn8uvYOIKPAMucKDWVXCtwawere/TBgynxXDLR F/Rf5ntMyC0qqDsGfQ8hTzCAKLLMvQQZ5KUGjbZSPBd0E2i0ql+QtOZlUZIfgRfBjKnjB4nbgnFW +tfP1sTelJmgZp+HOfFcoMTCDvYrmLtsvn0Pu7cT0Y7NmudlmBPPBfYEv6t9TSXPSaRp4s9aQR5/ Z6eEqRpoa4Eou/gEvJaxvZZaoEv9K4+p4JFgKnFukcDR368G56Q58dwpDhYRELLmgnFTybUEMQJa 3Q25VeJ528koYFq/qyZ+l18gNE0F4vlYPks5LQoi9sl3Cv5ZgCN4PRXwtqDCkZX8aPUfc6ndlwhE TKz5VYeO2HR6wTL3dE0NRktT4jmBUtCVz6jlwK6VtbYzVd4+Y7dftYdF7A3xXPnYAcmG1xJlahIQ 5tu1sfUyJZ4rOz/zRbUca1KW7NgRqXUX8pR43gLZxKB6L30vPwR+yWIGwpd+fxlbaUnenbxgJ3j1 GbCYR9B7Gb/vGt9dbWZviOf6X2LdnPg1leRHn2WBiH56K8Rzfp0f0Eb6fBpDKOMeNuCI7n6hpTrX Xu0S7+Fz2H71+cYerc+eE8+1Z59bxi58v2eeOjXHs1n44SjnRYu7anJP5WH8qR6bn9vb4nnzp9rM Mm3RdWyjLiiFZ7UrlGhnweGyNud7CV7aYt8Hzonn7qu/r8K5tKp4zocQyGpe7fyvvpqApV321yo7 Cwp64b/l2y7+/p5slhDWH8WsXeu/tetFC1qnknbtFBG75Gv/OiWeu7c8mE/UcuvFc22emG9R2Vp9 hntqI66r95wSz5WpxTlTPsnntbmp79QenUijXsydViHi+f8mZcinqP+1/Jq6UUcWaLRXXKyHrRLP Jf07/1TtaipZHMUupuZY6tPrDIzT1yqnPumLtWP5rWMVO9KNoS16qXMgdq9d+nzNu5+J9xbimDuE EEIIO4mI5yGEEML/QSAgUAmE9RNGk0wioL87JtWOiX5S6agzx0W399JtlGXFc6KroLbAbh8sakIf AVwQQBKorAEVnzHxFwjvxcA58dz17m1yLUDrniboU0KW6zxD21XVaEe+CvbUzzSxQZ4EEX2HAEud 4Le0leK5ewuE2hlby1pwiygjEOd4QjtT6k4Kn3HPKeGVwKasarCilYdyEHx0X6JzDZ61PFfxXDCG KCgQLJjT378FpJSNsrZ7ShCnv3cLDDu+c25n4yLmxPN2b3ZEKBUYtUOTMDclDKt/+Wp51v6Uh10T U4FP19vVTSjo0X7tXrGDr7cpn287qPxNftRHFXv9n60TTOpObnVKkOQLpvIj2NoWAaiLqaCsNCWe a+eOgbRTp37Oz4L9yk+ZsMW6Y48d+btden3gcavEc/eXB3WrjuVFOaj7qV0vrvXexXpMp/87vnNK wFUOypgtqz/PVf2GcrGjrgpL7ILIy5/0bbvZRTv23BGlUzaq7dllZKFQn187/hyJWQPMzfbdl7DO jgUlp9q1VMVzIgcR0fP2ZScf8miBh+NC7SwimugL6nP5LL+/LL6Tb/E8jnLmL6qP8/2eSaDcTlkL b/SXUC7+z9dWG279FZtgw/z/1C59v7NTbdFxpIuYEs/7POhrCFLqhM/VlqsNuU4ZK4vej0+J55Ky bnXkX593T/bZjiYmYNmNz/6qX9I+iC3sT+KjamDbZxzZTbTu7U/QXD1M2ZV7aH+tX5nqw1vaqHju +QgqdfwhXxZE8Qfa7ZTP9WzySXjWB9u9ro/n3+W77qbX97Nt4xfPbgeg8cwqgouFO+7RlwfbcGR8 QzkbOxiTVf+lH3WKDL/dUAaOKe6v9fwEofbe6TnxXJIXflXbYJ/Kni+qYx2JfVvgUWEP3l1d+0z/ b2MBNsb2tcf+3q4hBvMpbbEl0clpIsqaj6rtWj74Nv5CXbCBVg9T4nlL/Gt7nQX71CfXkxtaarZZ cUqAupmyOe2a/2q+pi5283/tsz85aU48b9dPtXHPUF/NsAhlamFDFe34rNof66/cv7/Od7KLfqyr rfK72ld/LYHaq3+av/Av4dsYtfoLP7NJpx25j53dbLFeZ5GCY83ZcxUjq3jeUiu3NrfwDOZf8qbM 2cn973//SZtVbwTN1ocuOi1mSjx3KoG22l/H5tm/fsaiZItajRk8f//9bFRZEz1XOZlJGfOR2oPx +lQ/x9ZbHyrxEe0d8GuJ53wOH2nhsvuz79ou9dvKrflIC2udqLUqGxHPpdZWzHHYFN+jXU6dquRa dWz8t9ZrKebYSvG8jXc9i3bTfM3UohQ/q7/aR7FVr2gy56y23+ZOFoQaj/BXdVzgGqdT1NM5zCX4 1r6t+L/8mb8aO1oY4ih9+a/f7bu0nanFeiGEEML+SsTzEEIIYfj/j0UWSOhFYxNgk3oBCdgh5pp+ QmniKaDrOMyp1eOrsox47nuIX4KZVcwRfLGrRMBFwLS9Y1ZARYCrv1awihjY72yZE89da4LtHY8C zERwk3ufJ2jWoI7AhGMZ+2CHAI+dXVNBTSKB40QFqQX8XvOa14zCreBYv7urpa0Uzx3p7DjRem8B DIFqfyfCyQOBVlCj1ovy8Lc+2OZ69lQDXL5HQEn5KWvvJLT7xLG+dhpOCVdVPG+7r5RfFYEIroQF wT9lTQzxXlDB6PqMyq8v52WZE8+1HcFIwRkBLceVal/eaz+3w0gbEwAlqipD5aFcCIV1l6D/CzgJ CLb2qCyIOoJivS25Vr0QY3y/wJL8CJIRCpVTDTIJhLmmD8QSZAWkahtQT3ZcEj8tkpAE6wgKUzZd xXP5l2+7PeqJF4KO8q2M5VuZ2GE+JZgqU+2uFx63SjyXiMOC0J5dXvkNZUxgnbqejRNAen9qMUQN 7su7+ncftsTPuTdhUhn34ppriY9eodALW21nXm2vRBY7+eSz2ajdwvJQBRdCFkGj3Ve+1Yfv6++p TtQN23K9+7JjdaOdTtl+Fc/bO0RrcFdw2Y5XPsX3s3nH0vIvVXwQ9GZTywZA3U9f4n76Fb5CYLX/ fuVFGFD+TunQJtrORnm2uIhYUfNBRONDla8y4//dpwZulZ0AtvKqgeZlmBPP+U4CLnGTb2FD+h7v I+X7ql2oe3/rT7aYE88l/lS7Vj9EBHbJXr2blg/hp/TNdQezzzS7ZidnnnnmuKtQQFx76svGM7iu P/3Gs1RxyGeUa7M/5c3362f53qng/kbEczbIJ9QFL9owe2dH6l2Ze60Coaj6c+Vi7OO+7Imgpm8m sNVxkjahzbofG+RD6q7dtTDGq77c/51m0vpuz6UdEHv672/5dVS4Y/gbxgeOrO+v4/f0563O5sRz 363vs8taWXq21o/w1XWc5nq7gPuTMLQXdua56rX6OKIne2RjbF++2EN/bzaprfLf7m28zHeyIT6m +nF+jl/zveqif5XKnHiubWqLxpTGO+7t9ATtzdiz9q/agbz2/pyd8vHV5tpY3r3Zb/M1Rx999ChE 1zHEve51r/EZW/ktEs/d27jbOFid6CMsLDC+WgWLoqoobhxI0GtlZ1xlcUatd/kgPGtHzT+yLUKX xSD9tXxRv3hKf08orq9GUh/aKSFZPRgrWlTAFo1961jReMIJJf3YaJF4rtzYiXKzOJBv5KPdw7yB vde2yA49J5GWD9Me7JxmI4TKOjaWpsRz45H+GvdVTr6ztXO2ZJc/Ab/OWSxAsIN3lV24rQ/VHuRn ahc6MbT5L8mC2+bD1hLP+SWnFOl7vXLJ/EG/3F/PviwOYP/uzzfVU5qWYaPiubrXv7I77aT5Hram DKp968v0U+sdm26leM5W+AB9lHajrLVD/a7vrH2scV+/+F5+jJn0e3W8q41aLGesZ6ylL+A3tJva dxp/2rneHwtvkW/11dqHsYX5QSsL/aBX/Jhn9NdqJ9o/OwshhBB2ChHPQwghhOF/V3kTHmtAmPgi GNCOQhSMcnR73fFE4HAs9yq7EOZYRjwXJCH8ErIdy9qSCb6J9dTx3QKFAnH9fSUB6/4duHPiuR2z JuJ1R6iAtiBpDdQLPii7/mhDQdOpQErb1WTXSr9KXrBJII1QXj+zVeK5ZyW8eO9nX9YSAboeTS+4 YvW+YGrNs3LqFxPIl50u/TUtCNoCRa2s/ausCWk1YDMlnguy2nVeg2eC+4KvxIi+rAWg2bDv7gMw hHfC8qrMiecWcAhMEx/qDmu7+9lZ/Uy/47u3PXZr90zdcUQsFIhrQWR14ud6aoRAq6Ct4GsfQPQ5 x923YFf/GQEqddPvPnfM6FR9qxO7jWo5E8MEpev1VTznbwS5Bf37IJr6ZreCjr09+RwbaMfHt+uV z61vfesxWNryslXiue8WqNaeev+ojAV4iSW1/ggf/bsV+We7c6uwoByIFK7tA+Nsz8IRIny/cITt 2SUuYNzuy+Yttqj3tbhDu+/vK//uK6Df31fdELQFQNkne+MrqxjO3gj1jh+vfk4gtopbUhXPBcaJ czVwTZyrJ1v4PxGKjbuPIKnk/8Tz9ezi8mzySnTrv5/tCswK+vaoZzbM3nshWpnxfe7VvzNentWP AHYVLPS7Fsysxz7nxHN9LT+lPfS+Rfu2A2vqSGYijzy26+fEc89LfFYuxGz+Xv+qLejrPLegde3v +Wh5JVZVYVCwvIqm2rD6b0IOO60LAdt99WP9qzj8q+8kDMhrFWc2Ip6rJ4uHaj6UKV9Rj1PXlxq/ 9G3L/4nUyq4XEI1nqj9nH/rkVQStCnvVvmrbJTC3xUfKgohYFyNKbVcqP9EgntS2rQ8ndDafOCee Ey+0VaJbv2jE54yNtOUq/CqXftylb9NHVds3ZrOoxcKkHnZpnFvtUh/Hr/WLsIgohMv62hk+nGBV X2eBKfGc3fk+38seG+rc+NvpTnUso/zr0e18qzFBXTBovMjXVKHQvS02rfWtT1Bv/NEi8VyZEm2V gQUI+l/tW2ri+7JYaGCM3tenZzQWaX69jXlqPiT2Lx+t/PQrFnzVBYMWV7Q6V778jD5iyj/rH3tR TVn4rDEk4bvPq7G3frBvf3PiufIm4vOxys1YgG80XvIZdepZ+nFVEw/t0Dd+7McT7dU2bL/OAabE c2Of/hr2olzrqULs14IR9tr6T0ne+fVVj25vKKPqv6RF46+1xPMedW8sqY766wmqfEG9flU2Kp4b P1j4Up9Vvgjo9XUn6kdb7xeSrMJWiufGncZd9cQuPry2s5bYZ4OdEt3ZWX+N8aMFsxYa1LkTIV27 7uukjTeNfdozWghSfaPxTL/Yq8HnsXuLSprd+7/y2UgfG0IIIWw3Ip6HEEIIw/8GFwl3fXBOoEYA ULCwBWlMQAXUauBYIEgAbtVg2RTLiOfyITgiLybwLQnGmkT3wceGnfEm3v19pXqU8Zx4TqwTsKq7 /uTF7jHBhf56E3cCgEB9u04QqgaHBYMErQhgUyhTQYGa760SzyFQ4Bn7spYEO2uABMQGO3Nqnu34 aLtIBEPtFK4BYbY0935fnxFIJcrWPFfx3OcJETXYRqx0Xa1HCJqzkRrckZ9VmRPPBc0ErKpwAvYs EF0/47hQNtoLgw3B1xoMYnuCvr6D3Qn+Erx7saMtUrCgob4XEIRF7anufFLWxBX5cW/BNEJrDST6 LoLv1IIaoridrvU5q3gukCjQWXf5us4u/Cl/047nrcI4MYCA18S4rRLPlYtg6NQuZ3kh+lXhQrCf H2r1rf4E7Prr5JuYbtdNtSX1omwILv3OGXZNxBWYhGvsPKzfr+0SrKfaNrvg66uw63hh/qiJkdpM /3eJEODo0WrHPiMIT8iqn6niuQUQ2nX1z3x2FVvhGS2yUE525LfEF9drl2FV8Zw92lnu+t7W2InF X/WYXygfvqC+11c7J8QQWFZlTjy3qETgeso+fY/gcfWH17nOdcb+oOV7TjxX3xYeqYOpOtf/EEb7 QL3n1VZ9bsovaZvsuoqVgviC3b6HuKWc6q41C76m3gEuL4LnFpZUu9qIeG6RUB3LSNo8O6n1rk/S J9Y8sB023PK9meI57Iivwrj21RYZ6sPt6mx/U7atrNspKURLZeUZ5bWKgO5nXNL64Tnx3GIyO2yn fBExRr9f69mO1nbUM7Qxok1/X58xFuAzaj3A+EF76T+j/VmUwVbaZ/aWeG7c5nf1tRrgcy0UMJbr P6OfdyKQcmjwlXXs1YS3KV8DRxvXBbFssNXhnHjediubO7SFUxtBP2fsWf2NfrW1P76qLoJt4x95 tlhFG5QXbYyP7a9VZhaCtHphVxbw1EUY/LMyc3pD9V1+Vmb60jreNl7qjwGfE8+JusY2U+Xm/mzE uKq/P5ttx3fXvss92IGFmbXtTonndcGcMmR/5kk97svnqoO+//QqCW1nykcvw04Xz42X6pHiUN7G qbXvlyya6H3PKmyleG5hydRr3DyrReJ17CiZazTYtv6ljgvMV5yAMnWaikUfxtm1n7GLX5/f8m3x XLUh17QTRXraHKi3e4ubLAxYz8LLEEIIYbsS8TyEEMKOpwWOBWr6SaVgip0X7cj2hgCcoFKdgDqq 24rwjbKMeA75NoE34e2TiTfxRhCAcE2UJhw4Nk5gpr+vRJgmyDTmxHOr0+vORsiHIIigVn+9wMpd 7nKXMQgG+RJwqkKnAAYBtE7cG4JA9YhFaSvFc888VdYWXQiSECsEm1tZC8jU4JzUi+dNQO0DpYId dtb4/ZToCnVQhbkp8ZzYUIPNksBQO6pxKhEG69GXAuGrMieeC9IKQk3BVqYCrQLCc0Ez31FtSv4F edSZuhNMtuOi30Gq/QrQCdRN4bvUJ6GnD2K5h8CfYJM6InpWoUoSGJ1abAJBXLuk6nP24rnvZ58E 1V7c9f3EOwFvNl/rr53W4Pv75yVuENXbUdpbJZ4LZAv4zWEncQ0myne/Y59wQfzpn0e+PSOBrpaB xFeyjf4kgyYsEejUi+/g6+rOYr9zX2VV7ysRg+uiF7s4+Qz1pmzZeX0mPquKyw0ilBMr+s9IVTxn b3b3VYGA7QhcO86TAOB72Jnn1Bb5nT7xP9WXL8Oq4jkbVsf1ZBICFxGkP2q8R9lre70/V3/qU0B3 1bzPied8vf5rqp0qJ8HmGkgntBE0Wx7mxHPCGvFpCt/Hv1iIU/2SxUIEam252p62OXUstZ16FoXw HcYhhPK+bfsOR75P7TCD9kJUq75/I+I58bGeFuH5iI1Twfc2FnMajvFOS8Zb6mirxHO7YKu9aodt nKTP7/sp/rl/T7rPegWN69i35+37KDboVBPjhsaceG4c4Vmn2glfQCzs763O5dVrdcDO+KV6MooF Sl4LMDcW0I4tLOo/I1lc1y9s2lviuXGQNtSXScPY0ckxRJ7+M8qRj2iCu+ssKqtHDftZX2ARS31O ib3Uz7BTfa+/z4nnyp2AbEHj3kD+jRFrXhyfzOa1QeOa9q5sdc1ems20sYGFR/LM9/Av/b2Ip0Sw hjJxdHa1D/7Zgqs2XqgoF2Oq2g/Ju53kzT6mxHP5JkbOvQ7Ic+p/63xFO+PDqsDdaMJnLb8p8dx9 ap60WwKt9mbspv2qE8/CX/X9p+dvf1sPO10818dNLRCGBeDaVR2X8ZlTizmWYSvFc+O4qWPN5Vtf UO1T6udE6sYcr8YjzLG1rWZ/ffJ9FuvWcRl/YK7RFnl41UB9PYN+09jI/FzfJ8bhOfmQavdt7Dg1 FwshhBD2VyKehxBC2PGYIAo21ffPCQw4EriuIG8icA1KCLw4WtpEdiMsK573CGgLOhNMHYUncCuw ZUGAZxAoIj7VQLa0meI50bOJ53bVTIlDyl0QYo59QTzvETjwvQRKIjfBwe4ngWg7QpW1wE8VBKVe PBcgEaSpgiBB05GwcywrngsK1aMPJYFMYpaA7FQiitQyFLiZC6LOsR7x3M4hO0HrZxaJ5wSaReK5 9s2+6+kFnlGgclHgWyDNLpIaWNY+PYO27vN2W9VAn4Ujc3leRjxvAXt2VUUwO9G1iVp3LQmYq/s+ TwJkdqy2Y0n3FfFc+U4FE/tdSXZ4acd9XttOHMHu+vwSwU2d10Ch4DG7FBy0g4bfqmUgUCpQq73W +0r8Q31nvUAnUVG98dP173w4Hzol0oL/snOo/4xUxXP51v/UPsIzKHt+ke3xLe5n0ZTjsOcW46zK quI5/++d3lVkccLE3OISaDcCvTWI7RnV36rPsx7xXB74+PouUe3KQpQmKM+J5+poTsiVfwJR9Xfu 7XP6lGp3kp3qBMwmoLVkMQe7MD6xKIHo2ueZfRJDp4L62AzxfOo9yvwQm2z3q7g/AZXNtmTHt36z +dLNFs/1dcTDvvyUiwVTfBLxrvk55epaZdcWwmn7xgIWRxAn5anPJ99sLNQfEb0e8dy9iVV1gUkv nmuv/HKtV/XlOHw2UW1MMoasdSz5ncUZrb1slXg+ZXPasjGufhL6Lf1BbeN8j9ON1EN9zpbqZ9Sr I4/55UXiuf5ybkHKqhgXGFfo1/rv4SPYpDE0Qb+Jav61eKA/iYgfMIZQZuzUQr/+XhYg9ONhAqYF QnW86nMWLEzVH7SD9rqm6hvbjn3Miefa7lw7ZetEwvqqAzasX+tfM9WzinhurlRPG5Av/sqYwJhT m3ZikWuJtlN9xHqJeD4vnvMv/l7H1PuDeK5Oqn1KbU4kL+Z4FuP3f1fvFg5aLFV9V0tsto4LjNMs 9mx9jbJ17zpn0v49o/GQ00W88ssCwf71SSGEEMJOJeJ5CCGEHQ8BjOhdAwGCQiaQdeLoZ8Gnegym iT6hugXy1ssq4rmJtoCaSS7BTDBG8NUEWsBQEFfAybMJltbAi7RV4jlRhRhVv1+Qru7u79lXxHOB M4FdOweIU4ImAsaCDgItrZwlO2Rq4EfqxXOB7yOPPHKPwKMABrFwjmXFcwGTqSCN/AkaspGp5F5V TJQElVZhPeK5XXBVTJI2Ip4LmKpLwbj+Gm1KOS56Z6UAJx9QF50QNOzeYnN2ybDFWt92B6vjqTwv I567hrjI1up1npfN1bpryd9qmfAFhJIWsN5XxHPHyk7ZaS+et/c/1rxq69pffX6JjXvm6vMIExYY 8StEPIt36n2137n7Suyr1rdk0Yt640/rPbWrGljuWVY8Z092BhGWq8gieV5tXP4t+mCbfLwdmd6X vVEBYFXxnA0Trmr/aoHR3K7shjZWxVfPRdBedZHaesRzCK4r51qf6qodHbwe8dxnX/3qV+8hbkl8 05z9sesp+2uLCvhdr6yoeeYP2EA97rixGeK5IHwVIeRLe65Hx6/CZovn2pi+uZ4Ko68h7PHRrfyV F0GDwNYEZG3QeEj98gX6rz6fjt12QkS/+36zxHNl5RUAdTznOr9bayzQf0ZS5uq/1d++JJ5baEHw rq/hUFf6gvp8fart22fUm+fbKvGc3TnyvJ4aYy5inGLsR4hueVVm7I4Y2q71nBYQ6N+MTfq+lZ0o n37RhsV/5g613RsX24U6NX5pOMHFQpBadsTD9pqBOfGcX6nvF2/47NQx/XyJ8cJc+15FPFc++tC6 aEBqfai2YaGi+jAOc0KWucrUKxRWJeJ5xPM+tTmRa6bm09qM8jWerr6rJW2/lhn7NYdpmwCMM81h jXurLfksn+87jB3tWhfn0ObYfZu7hhBCCDuNiOchhBB2NCbNglJTgW+BE6Kt3VM1EcbqO74lQRqT 4I0EhpcVz02y/XzqqaeOAkkVPVsAyIRa8v86WZa2SjyXVzue6/dbBW8H3hz7gnjejsAkPjieVX20 svavIGpf1u5RgxhSL56zu6ldxQLri97pu6x4TiCcCgyuN83t9pljXxLPBYHrLiZ1aLHLoiCiAKdA WBUpCYd2nlq4IqjPF9T6tvPZ56fyvIx4LqnPqcDjehK7JG61INp2Es8drW8BQ83repJgv2CiuiN2 13e9biQJ+Ktb7bf+jU3aNTjHsuI5Wr/l3cx2j2rnU75d8mz+pl68hoTdztnlMqwqnhOD9DE10C44 vpboxE9UUY496YOV1yqsVzx/9v8dhVptRF01QXO94jm7Vif1c+tJ6ldQnN8lCBBN+jzzkXzZ3HNu hnhOgK73s3vODu6NjJE2WzyH12JUAYUoqa6NhdrvlDsxyljEiQDt9/oMvyeg9/nUFtkKcbuvi80S zwn0FodWQXm9iVjkmfZF8VwdGCv2ix7Wm/TnxllbKZ7DOMsz9H5KnRrDOCmlf52AMiZAExuJZ37H vpzqYSzlJIreB1iI5PSZ/tSHOb/oueoC0or+Ux6qb9QPtIUhe1M85/u9C3ruc6uI5zAWMhYwl+Cn FvWh2phd/fotr81gp3UutAoRzyOe96kXz52ExybrNetJ6t9iwzbu96z6GgsT+WB5qTbVErtXB/pV i/z4eQuU1lP+IYQQwnYm4nkIIYQdjUmgFdX1+D7JhFJASsCpJtdPBSPbzoh61PsqLCueE2HtXnJt P/kV0LPaXEBFMFwgyw4L77K2krzmeavEc4FegmL9fsdICpbMsS+I5wJNAk4CT31Z+y4CZDsSVHBB WR9xxBF7vBNZ6sVzu0cduVnFc8GYXgSvbFQ8FywhIBIjV0mLdmhPsS+J5+zzxje+8W7XaFOO2K9i X8+inefu7yhVu3nZWA30EZI2svOcSEUAmRLl1DexotbRomTRh8BzC8zuD+K5cuDr6rMuSsRKwW/+ Yk4858cFHetn10rySWjh8+rzsEn+b45VxPOGOiRkEd1udatbjXap/PVN9ZlaIl4uEiDWYlXxfNHO c4HYRRB/qh9lT/xse4fnssyJRGuJ5/xL3cUt8a8b3XlOlLb4oX6OrSjPal+LkuA+oZ/IqtyqqMVH WnQwJWZiM8Rz7y6vIoT26vNzx7Yvw1aI50SaKmSzWe/XbkIln+/IdqKm9svPtX7ANY7Dtrixf32K PtkrdfR1PZspnhu71PGcfMrLqmMB/bM+b18Uz4lxFsTVsbl78yOrPKv8K1t9/FaK5xZ1Ebhrn6gO iXKtrtUzf6aPNCZkm+1a/sriD0c59/dgq+YMva+z89xu9Nru9Sf84tT4pWEcp6yqbzQG3qh4bixR BcQ2v5obn6wqnns2ebCYR9tThn0f2t+jJbbEr+vr2Oqi8llExPOI531aSzzXZpS3HeHVVy1K2pl+ qbcpzyt/Fq3z3Xwxu7cwhx+o7VlSF77bAngLfNZr9yGEEMJ2JOJ5CCGEHY0JcH0f5UaSYJrgosnv eieXy4jnJtjeDy3o1QdTTHpNgh0vKLghECBIY+JMQCZi1DxvlXguSCXgVL+/BefnOL/Fc8/Xjumv gSvBL7v9BCCJy62smyhX89yL565zgkEVz32OIDbHsuK5oH2/S6klNkM8FMRZJa0qVu1L4rl3f1Zx i52w87kAHtQpobEKGoLQnsHR0WyfIFsDfd7zzL6m8ryMeN7yTeDvr/E9hHBHsNc6WpTsNBFAbkeO bifxnFhTj1f3f4uBvJO0Puui5EhrPo4g472qgqK1DG52s5uNPtRxx/Xzi5LArvpW7zX47mc2Mcd6 xHPf5Tn0C/wVYcTpGBblCD4TgOqJJP5PTLCzr/ryZVhVPNe3OBa4BqPtZOI3F+WBQF0XtvlZ8H9K lFvEesVz7/UVNK5+WtC9iTHrEc/ln+haBUF9DH+iHqt9LUqEc32tPGmHU+88N9YhBk6xGeI58a62 baKyRSb7unjuOYlpfZ9PgNXft5+Ny9gPYZX9GPe1xR76F2XndJnehgmbFmTVPG6WeO5zbKPaPb8s 717vUm1pUXrhC184iiet3e5L4rnxriP0q++1YINtrjLuMa7wzm92sJXiue9zHHpdsHPYYYftNgbl g/QLTQDW1trf2Jvrje3b512vX3MqSj8mMYZmQ+yhfzZlbWHxonZ68sknj/Ve+0/9fVtYtB7xnM06 jr4uLHJ6jtNb5hZyriqeN/xeW3JKinGdxQv6UKdiEZvrXEh7c5KR12X1r15YhYjnEc/71Ivnyrae SKNsnUpmPlJ91aJkvMuup141wNdY6O/7fL8x733uc5+xvZobVLuX+FKL86b8egghhLC/EvE8hBDC jsbuX8HJOkFcbxIUsrOPULXqO1kby4jngj0CtTXvLZgoAFADDIRJ4kHN81aJ54JMApL1++0GEpCe 4/wWz5vQWYPDbQekQFctE0HHqV3+vXgu+OA4vRr4FuxaVB7LiucCe0TemgcCiXsor1VSfca12FfE c/kWcBNU768RhCTgvf71r6+33IXgnmBg3cEv6En4EnwS7BdkrYE+gWq7FKfKbRnx3LPamStg2N/b /6973euOgohdarWe5hLRTJ20/Gwn8VzwT3nWchDAZvP1WRcl/kRgX/m+5S1v2e0dsi1p/wK4Asz1 84sSe4Cyrb652duUCAafX1U871FW+hwiAHvXPyh3foH99s9IXPI+6vX0UauK59qt76p1zIZf9apX zb6D2/f4XH8Es2ewm4r/mGpXi1iPeK4+BdJr+ydO8a8tD+sRz7VxRzGrn/4z7NppLATral+LErtW ZuzaYhP9TxXPjQ3mhKfNEM8t4Krijfq0yGMu+K59EC0J7C15RzrBttXRVojn6pYg2dtfW9jQfibm 6dP5YfDX/Gf7O7vRTvrdwsQW7bna/WaJ5+rNzlp57e/LLxMIVx0LsLNeUN2XxHNjTOJqfVZ5M04w 3q/Psyi5n/a0leK577MjVN/Wj2uInr1QrV2pOygfZd36Xp/z974PUlYWThrz9vj5uOOO22OhJaGO j5vrI9Sr9l5Fd/7D4tHmG9cjnvMxxtD1c3yMZ2hzisp6xfOGslfnrQ81PjAWNx+qflE7NXbpTwNb hYjnEc/71OZE8qIPNQ/q+29lazGJBZ/uXX3VXGrj3UVl5m/snpCuDzOmNn+y2L76UvZHYN8bfWwI IYSwXYh4HkIIYcdikiqgVoMRJuwm1QJPi5IghB1pdZeLAK4j0tc6knaOZcRzE3fiXf1uR8o7mnVq onx+i+cCkHZU1yCdZxOEmwo2YKPiOQF57p3qy4jnggp2ilU7sfv3JS95yaSgu4x47nME1Co2ClY4 7nUuOLGseG7BgKM3ax4ELQlrtR57/I3IMnfs+DLsK+K5zwhGEvaqEEfYIDBOCWc+qx6VYX9//9c+ HEft3kSNu9zlLnu0RYHuuXf7urfvrc/Zi+dgAwJxtc24zs7UKlRWfF5AbGr32HYSz/k9Qk89ZcPu PAuVmmg9hXt41npMMvzOfWuQln+3Y2fRrjJ1z+fw87WO+TI20t9TfglKcwt5lPljH/vYPcqhF88J GRZ7WHTziEc8Ylc6/fTTR1/Wt2l1TpwgZBD8ehuWFz5E+16VOfGcvduxV8UEZcSG+6OrJTt0nRrg 71Pwc3Vhg2fwPl9CyKqsRzxnH/rH2heqE/XQ/NF6xHOfZTvGClWYaX5prmwafLTvrnkXfCfA93at HBctJCMsOgmlls9GxHP+sy7gkg/9oHxXf+5n9WQxEpttifjS52ErxHN5sfu1lkfz856DTevDW/kT 0e3ea9cqfzbbbFj/w78Sh+qzb5Z47nu0pTqm5EuJMb0dT6HMCUq+q/o57EviOf9H7NQv1Huz7bWO G5ZXZVV3aW6leI52/Hxve+q47/+cSNMWbagXY1xttf3dtb1dmKuYG9RxtvGoE1bMZ/pnM+YwZprr I7RzY8467mFnxpeN9Yjn6tGpJMqg92Geyet3zH2mxq9sx9i5nlZSxXMCpLbW+k9jEOPF3m+wE7bf TpLiO/u+yDjdqRJtAcOqRDyPeN6nfk5koSuBus5X+LUTTzxxzXEB29I+67jYfISv7seOTuPgv1of piy0E3kwVrCIpo4jLGSd8tMhhBDC/krE8xBCCDsWk8UpcZEALWgkqLgoCeA4tpBoXAM8gr92T00F DtdiWfHcrr0qfJnwO855CvmtxyBKWyWeQ0CsBk0luxAFN6YCxHZ/1PdVS1U8Fyiwu7gGdJSJXbpV QFQ3ArKCIv31VTwXhJoStQgcjj6uyAf7qe/qlXrxHAJ6gnL9NWxJngiR1X6UjwUIdiXVPFfxXGDV 99VAomsF/eZ2RWsXhGHBG89NfF0P+4p4DnkR6LLgob+ObQjQvu9979vtnr6HMEUMrMFH5WlHYtvB 6VqLK2p98wMCiX19N5SpI1jrc1bxnHhrgUYNsgpSEhEd7zoXSOMrBNrkwQ7Xav/bSTyXd8cL13sL 3PMndtpOCTs+z27Uo3Jg1z3sQt6qYMXf6hv4nipMNogK8u79xY7X769zX3+rz8TevDOy7uaTT7vr +12rLVXxXLDTwhxl1hJxgl+o/rMJZ3x3H4iV+AuB4lWRV7uB68567cKuz7qzUbmwCzZcF6EIqqvn apvEMiJYbVPq+4gjjthDoF+GOfFccJhvqHXC91pA4XUBVbBor3to/mg94jl8zu7suhCBj77DHe4w igg1AN4gvPND3ited5MrTyJS7cPZH59eX8GhvI1XnIxQn3Uj4rnFPfXEiFYufftu+I5jjjlmrCP2 IfF1BHhjrnb9nHhup7fxz3rsYwrjC2JT9ZGSvHm2fjECmyHMVX/SkjbCD/XjlsZmiedgZ04VqPnh m+3kbeJzhX3zmerEe6ynhKs58Vy/qW+uO+yxWeI5HEtOeOuvUyZOrNCHTIlaDXXHLzqWuM/3Vovn 2qfFcV5x0H9fnzxLy6N64nfr6Tp9aq+aqWNK9anvqG3fs1lYqt3VOvSzBVvGU7Vtqw8LcRrrEc/h c/rQvs9vC1YsHqsLB9WRxTrmCnU8WMVz8zaLCVr/6Tv4Em2m2rey1V7NCfr7GmN6DcucALwW55d4 rh0Qdxf1S8sQ8XzzxHP3dupD7Qv4SIvi+Km5cYH8W8BlnGRc3I9LLTQ11+7HjuYA+vfqFyAf5mN1 0aq2O7UYNYQQQthfiXgeQghhxyLIVoNTJusCGoIlJqdrJaKJAErdOWbXDeFqPQGKZcVzQa16nKxJ rqBDe6+hJOhqckwMqsEOaSvFc8EyE/u6W8XzEfbt4hJ0cE9ihoD+1JGJUhXPfYZIVuu0TfaVq7xL 6oW4apFDfc4qnitrAlsVnwSKBCiUSStreRYcmRJcpCqeEz7do14rD8RRAR/3dG/BMKKV8qj1OCWe C5o47lZQtOZDEF99WoDR7i8pFwFvn2Fbdh85SrruxFqGfUk8V+fqSVvtr9XeBVEJoMRLbdp3nH32 2aPIJLBUA0fqVrn1gp9yrzssJeWszolb8uD+7OrII4/c47hTqYrnPtOOjq/HJ6pzbY6YKljtWnkn uPMNdlTbqeJ7BK/5qr7tbifxHBY4CIzX/KprooqFBHydMvA5fsTCAyIkEZZfsGikF1pc6+f6XnlJ +VqkIrjKb7U2os3akcpHaB/aiYUmxMxmn75f4LLugGRvXuthsYUFFK7nDwRDtetax1IvnrsvIc1u 3N4u5YHARXjqy4xYIMDrHjUQ7T3kVTBeFkIW2+nvJz/EREJMOyZUQFYetF02X/srz6tN2qnYjtJn v8QrCwTqjidlZyHU3IKGRcyJ5+qZSMRW+Njmx5Ubu5rqH9hs7xPXK55r5wSburjBswreyxe7Ziue udm1MvYs/IUyFeyvQpTP1XbVdq8R3uwsa8+qn9Xu67NKGxHP5fmkk07aQ1jlg31em25+S/5dW9/1 bKxAfOnHEW1MUxcDKkO+jn9me/JaF2asAoGO/6htp+WLUNj7Ss/Lv3tXer1eUl+E5rZjuGczxXP5 soDKwtD+3q7lny3k4tPaWECZ6VMIpMqTHcnHCSecsMdiOu2APVWRjj0Ys7YTMfq+ezPFc9d6L3Dt h9ShsnUywUc/+tHRLzWfro+16MIzqleCGPtqfmarxXPlZfxS20JL2hOhuC9TdWfOUdt8yyffbJzS f6ZhR/6UYKhv9cz9OJGPtKhI31jH8YRZf+uFvfWK575Pv1fFSc+ib3BqCV+jHvUZL3zhC8ex41Qf WsVzu/TrnMLPFn/VhUVtkS3Rsa8L4wmvFZmy12XYbPG8HeVfxyDapfE0/9DGu+sh4vnmiefyw7dP 9T3qj91YXKgfcS3/5P/GBRZDmdOwTwuDLe5qfkz7rz6UPVloVxfguS8b0XZ6u/d/Y9W6SDKEEELY n4l4HkIIYUdiEus9f1V0EwwgZtZAxBwCIMRFYnl/H0El4hVxd9XgxDLiuckwMaAGpSTBI4Epu1Ac VSkw34KC9VpJsKbfkbmZ4rlgjaPjrJ6vQUGBlytd6UqjMCSwSsC1I6/mo6UqnkOQ2Wem7m0HGfHN vX1WgKEK4lIVzz2vHeb1WEuJOCqfAkZ2AApC2xlT7aolddjvFFZ28qx+ap7lzb2I6BY+KDOBsBqw anmu4nkLwNid2L8rU/J/n3E/ZSJII1glQKhc+vwrz/4YzmXZl8RzECkF0LStviwEpwhQfk+sYvts WWCtBioJDYLvNXAkUKmt1V3+kiCWclWHAtieXxut9S1V8RxEE4smpnZUsWt1K4DHZtUjeyQyKoP2 HWyGeNmX4XYTz/kOO2eqSNPKwe8FFb2nUR0S1rQffs8zSmxbe+h3piprItHUDlPl7TP8hXsqG99B JOj9KRH9tNNO202M9h3ae7UhP7vePYls8qkdzvm5+s5zPlhd9sFd+VbufICdzHwKMdgJGPJb/Rw7 0z6m2tMy2JHPL9XALjvTF7JBfZPjYdlZE/Hr7nPJcyh7AoA+hiijLut1ykdgeL27iufE83ZvdcrH KkO+0HPUclPO6k1wv7fN9YrnEGRXF3WxgMTGlAV/RIBgf76fvfTtm98xDukXZmnD6qHatJ8tJuEz +CTXeNY5+9uIeA59kAV6dfyhzQrMW8DGd2kH2kVdrOT5iYL9s8kDG1Qe9fnUL/9nHKF98fm9mLcK 2rMdwNUWfae8Hn/88bst5NCeiGnGAjVffrbAam7xx2aK5zDusHt8SlxUN2xKm+bnjJHaWKDdW72w Qz6+f52Ftk2AqmNg+WCX7Ex7Yket39xM8RxEOa/6mbJpeVIP+nr9JRvxszFAqzP17fdtwdlWi+fg Y/ijvm5bMo6oY1+i3ste9rI95g6SPth8YG63qDo0Lp8SLNs4UXlpp2xEv1p9o7I47LDD9jgaf73i uXK3qNd8rAqZvqv1oeyIXZo7tL6+Pn8Vz9urduriLH2oMbwxmAVtxv3ajD6pLm7SxoxvLUJaD5st nqsDp41V0V9qfa4xpfG2Y+mndh4vIuL55onncH+LVurpOxL7N+53ahl7af2nuVobF0j6Ekeza5Ow MMTJR3WewvexBfk2btTf6HP9rrZz9zfGnOqPQgghhP2ViOchhBB2JCbIU4ELwcIzzjhj6UCCCS5h S3ClBmIEmezmWXXX7jLiucm+AIvgbd1pLQmwCGwIALSAkgl3DQJLJt19oHUzxXPXeoa24KAGRyS/ k8+pv/VpSjwXsBA0nQo4Tt3b/5Vt/11VPIfnFripAZV2DwEFQWnfq6yVfw1YSYK1NcglqC3AUXdl 1jzXoFmfpsRzCBbaUS0AKVA0lSf3l+8p2/B7Aev+ZIJl2dfEc5+1u0JZ18UEUmsjnnnK9gSc7NCw W3JK/PB7gawqEvX3bnYhLbPzHPJttx8BWpC/5rvdX76rLff3ddRpH6zebuI5tB2LF+baimdRBlN1 qOz5Ve93rTuu+SQnDRAJ6ufafd2zte+p+wqk9gFFbU/fIOg61Xabn2jf51+2U31XFc/ZhuAm0bNe 6/N2l6pvSd9Q24aficjrFaFBICWU1j6iJc+i3rW19s5cfs5uQcLmVBkvsl+/87wEnmoTy7JIPG9J fTRfWOtZYtsEzro7cSPiuechGHof8VzZNB89ZX8S4Z/f6EVN9zX+cM96vdR8Uvs+z85v1u/fqHgu H643Pqi22L53qt7lj1/QdxlD9L7f/530MCVytOR+/IQFHMuO5yr8PJ9WfbV788V2+lXYuV2BdVym 7giQhKEpNls89yzGMU5ZqeJJS4vsX/0SFp1m0x/jrS6a2FWFlpafdr8m3m62eN7G5fI01R9Lbew3 5ZvbaSJN7D8/xHP3dCJK9bFsjwBWxTl5NAaxIKbWHZuykGqRWG1xivEa25kqk0VjI9fzz9pDPelh veI5+Fmip2unfIe89LYqf3xYzX8Vz2Fc7JUd9Vo2QZi3aKft4K3ty9+NBY2L19sfbbZ4Dn2exYT1 My0pP+MFixLr0fxrEfF8c8Vz6EuI2LVPaKn51tZ/9u2+jUvbAkZ4TvNaNlFPXnC9fLWxo7Kpbc73 iAPU/jiEEELY34l4HkIIYUdi0iswUiePdiu1I8+Xxe4Ux6PVQIKgC0GmvptvLZYRz2HyLjgiyFcD tTUJagheS1VwEQiyY6UFJDZTPIcAlmMzHbFupXwNkPTJ5N17FadW30+J5y2Qa8fOovsKMgiOWOAg 9c86JZ4LLDkm0/PMCXctCdYKgBE0ahBTEE9wpgoBRF3Hhk7tCuuTMiXw1eNX58RzyLvfe+ep3SZz gbSaBFcI2XavrBpYw74mnoPtsWEihXzU75lK7MiuJrsJtfWpd2tDUM0OHrs1atupie8hNNW2OCWe Q5vT9gU52faUSDGV1LXnFDgnavVtdzuK5+pfvgmNdlTVz8wlbVIAXj7acek9hAdBWYuR+LHqy+cS u7P7hyCvzGp+BVC1gal3w/ZJPWmbgsz1mNUqnoP475habX5OCJtK/Iu+qr3CYr3wB/oMPrh+R/9d vXjeFoFYOEU0mBO1anIfO5fbUdzrZU481xaVvf6gtoU+tXe6E21r2W1EPAf7c1+vNPFaiOoX5pIy 1H8Ra6fsWj05An/qlRJ94k+IA4LqVSjeqHgOwpxj5Akic6du9Mnf+RFjHqfiTPlc99QGLP6b69M8 y0bEc/BDRLb+vr6P+Du1AEWZE5jVS/8ZfZITI6bEYWy2eI72qqGHPOQh46KKuXLrk/uxfQv/5KO9 VqeH/VucNbf4qKWtEs9hR7D8smn9y1o2J7nGWNMCg36R3PkhnrNZInkdb2oXTi+oPgjEaG2w93Ge Sf9Tj1OvqFOf15ex3SquzSXXGS8r637xTmMj4rk8aRde57DWeE0b4Av0iXV8PCWe+788T8115lKz D7v4zTM24le2Qjy3+MA4uL5ipU/ahjHnqou8I55vvnjexrv6sKld4HNJPTjJxuuBjCv6xb5tLut1 OWy5lvFc0s75Up+t85MQQghhfyfieQghhB2HIKTgWJ2ICgSY+Nd3f62FoIWj/YjQ/f0EWuyCngv+ zrGseA4TYfcnjhH+q4hoYuyIRQFGx7HZ+VeP13SN/Lfgy2aL5zD5NqkXSBAsqgF7yYIAO28ECu3Y qn+fEs/bvd/4xjeOE/0q5EmCT0R7AWQCEFG5D5RMiecgWDm+3HH/AilV4GgC2AMe8ICxDtlYDXy6 t+Mga/BBGXrH6MknnzzuHKqBS7akPO50pzuNgRmBpXrfOfHcvX0fUUMAVZ0Q9quttNSO/ffeUO9J XTWo1tgXxXMIJFnQIvDlHdhEhCkhT5kLwipX4hTbn7pfQ94E7Il8FrTYuVQDU/KpbB17yHbVQ//3 OfEc2p1gqPd1WmjB/qudtMQ2BUzlw9Gjnre22+0onkM5t/eEE6M8Q/Xlkufig4js2rj3Ok8JPw12 oUwIhdouHzxlF5Lv09YtqLDDke+cyqvf+Rvxm0+dErr5Hjs6LYwgMPLj/d+nxHPPwPfz1Xy/wCr/ UO2tJXasXokQgs9T9rUqnkt+CSNTi348lwVS/eKxJtBoI8pOGVc/2hI78lzeEa2tLBJ+lmFOPJd/ PpUgUvtwqYkyAtF86NSpExsVz+G++gB9kuC9oHzNa0vavUUb+jDB7Pb+8ikIWtolH1oX2TUf529s 7AUveMEe4u3eEM/lje/SfxKItcm5emdL2gOfq97nxk7alvIi9llQNFVWnvdpT3vahkQuR946jrr3 k77Ls061efVozMPW+rwoZ4t+5vrTrRDPof4I1BZVHH744eN4sPYBLfHdTlWSL2MLfnfKzvzOeM5i UUJlFfha2krxXJ6UmcUCFqU4hr0KYn1iK8Z9xhPy2bfz80M8l395qe891x7n6pZtOTnLYr++XD27 MfFU3fX4O1/2+te/fhzn+i6+Zso+jG31VV5rwLdO2Sc2Ip5DGzMnM3Z11PrUQlr9tHEj/6UfrSf0 TInnYFfswxiEj5/yIS2/2i/74E/sOF/PgtKerRDP27zC+Et5T41njEme8pSnrHz8fMTzzRfP0eYV ysQ41kKuqXqU+nG/Pl/d17JqY0f+zK525dy/sqKm1rYsjnrve9+74XFYCCGEsB2JeB5CCGHHIYBC GCW+ONa0JQH9D33oQytPDgXWBM8E9/r7SQKOc8LKHF/4whfGQFd/HwLNXIDK8whC2TH/J3/yJ+M7 fY844ogxiCFYSzQX2PRZk+l6b0kwqN3bUXFvf/vbx4B5f437E5CnAnACBYJT/fU+r5z7d5X2NDFQ IFVgQ77lWRKEJfoRLAUzCOF1Uj8nnkNgw2flQYBAoFuQVfCBgGRnmLIgLLiH4yb7fBPu+neT9/cl BhEBBF2OOeaYUXQhmFuYQKBz1CcbEoCtNsHmiAtT9qBcBT/teBIofNjDHjYumFAegns+K+ChHgTx +rJYJJ43fKf72/XPBogOylyghQjpnd0nnHDCuJvPd7CpGmxcBe1CILzaGrFH2U+hPjxD/Qw7mhMd lGdty+qQ6DFVzmiBdZ9VFoR2Zays1Sd7YTfaHZ/ATqdEs0oLTLkvW7AYghDL9o499tgxsOtZ3I+N 1LZol/+cfTTYINFEHWkjAnWESDtJ1KNjzdmmYBtblJ+pNisI6BjsWtYWTKxXbCIA9W1J4lcXiQu1 /bW0SOiGPPINFhMQDAi1jlJVDmxaUN/CG21VvpTbovuh1Z9yY4c+z4dq33yqf4m52qfvZcdr9Rft nuyIncoXm5BHopSgKR/IT9o97F3OfTloL3MLuprvJwAIltrVLfDL3tgyAcQCFnXAd2hfa5XBsriP POuXnve8543lpPwlNkj48Z3VlnzO7zyTMj799NPHtqfdqTs+WqBWv+W52MGi9rAsc+I5v6nv4heV ocUI6ln98MFERm1NfzCXD7al3VQbVnf1+RehbNgTe3U/5Wphm/woG+1cORO69dHsz/3XqlP2pz9y Mob7NZ+k3NmfvlLfTrTRN/bPwM77Xe3KgPCjXfXX8ZX6rjk/7fPNXj2bNsT+lbO8HHXUUeMCBYsH tBW2upbPlRf24QhmYwjPw/5a3fEL6xVbGsqX7fTPqj3NCT+Q9/oZYwF5masrdcQX1jEDH83fT5WF z/ie2v+xuykxraE85NG4UB+kX1J2yk07tChDv6I9KFv1vdaCG/dkJ+yCz9HfqVf1wTfzpe11GfxG 7efZz9xiPc8+5Rv18xaPzo0x4bPKgvDDtvTrfIy8eVanSRBElbs6VS7VXpqv0+b671funmMqz3sD 7Vtd9vVLOK+vjWjIN1vp+3VlJN9TYt4UnlVdK29jFf5POzW2UGZsQzs1TvR385Up22wYZ9W6lviV tfrOhjy1savvNT8gpLItdstP8j3sy/O/6U1v2q3MlAcbmGp78s4nEYPbeMr4j7/Vh7Jj9mE8xz58 x6LnXRZ+xRitlsui8Zfy0k7661u7mStLNqGO2AB/6DQYdenZ2lhxrYWhU+gP6xxRmfNHPep/qm/k J+rrcxrqg51Xv6YNT51usAzGGzUP6rS9D7whv2yJj++vZVO9GO1fP/t9va++dqo82d/Z/9/4fmq8 Ozcnaqhftt3GBcahxgUWAPvXuFL9sqlF4/6G/KtDZer7zYuddKGNm3eyDTve/c34lIC/N+w+hBBC 2I5EPA8hhLAjMXEUyK2pBs2WpQWGazLZXDSBncL1PlfvtShv7TOCLgJrAkUCJgJ+Jt0tD8vce5lr KnOfWeb53bflW577fPubgKkdiFU8J6h/cmKXUqPVsWCLwKGAjH/97PeLysRn5/Ld6lqQRfDBfeVZ IEjApJXTnE3M3bfRykOwotWjsvFZAURBHbvB+rKwS0IQRdBnLdrzyn/7DqmVTSv3tfK5DFNlsMgm puqi1cccG2nL7fsEmpr9VTtZ5j4V92UL7tHuyVaUeX+/VZ+14f6uU1faSvsO9ahOfc+icm5Mff9G AmRz9bcoH3P1t+gzjbn6Uw5+9vtlyqHS37cv3+abtM9l89hoz9ny2fK4ln9eK/+9LfS+rreF3i/t bZq/auUk9TY4R1/Grpfn1k740r3phzAnnluIZLGUMurbUyu/ZkNrUeut1d16aGXTl2vzS61vXMsu Kq71OWXrPv3z9X1WfY6p75m7bhkbq/UuH+3Zah+6DM3++zFE3/5Xudcc1Uet9axT5SOt9Zn6PXPl 37OezzT6uqj933raYLtfG1s0P9Rstl63Sr7nPrOoTButbNmW52rjtuZvjKvWqlNMlfUq5bMqU8+8 qIww9Zn15LGVWbONvp32PmgZan6WrbeKz/Q+uo2Nm51i6vmXKbN27+YfW3/PjtmH+yy6x3qo+Vym XNbzGfTtvM0rlumn51AWNR9zeZlqN4vqZKoO5+69LMvmt9lC/f6p/K4nn1NlIdV7T9G+r40Lejtd z3i3PavvZ+N8YZsPruIXQwghhP2diOchhBBC2HIEbOyEsLvQLru5yb5JvZ0f9Qg9yY6TueMNtxue 364WuwoX7SS088Bz12OSHSlpF7yduCGEEHZnLfF8PQJCCCGEEEIIIYQQ9k8inocQQghhS7G7wzGO 3t/t3YyOCnWEo6NBrXRvuz0Jwaeddtr4/s4qnHtHm/cy7i+Ch2Pzr3Od64zvl1QejuazMEB5ENPt hmnviPce3b4svKvOe+4cw67sQggh7E7E8xBCCCGEEEIIISxLxPMQQgghbBmOf/P+Y7vJL3vZy+4S MK585SuP71rzPlbvDvdevtvc5jbjjmricC92XPjCFx7f2eq9bvsD3sXnHYSey/Nd4AIXGK5ylauM v3viE584vovuUY961HDb2952uMxlLrPHQgK78r2fkQAfQghhTyKehxBCCCGEEEIIYVkinocQQghh y/DOSe8wP/jgg0eRuArBayXCx+1vf/vxHv07NLczr3vd64YDDzxwj0UCyySC+y1vecvhDW94w35T HiGEsLeJeB5CCCGEEEIIIYRliXgeQgghhC3DznPvOH/6058+3OhGNxqPKV9GNHaNHdZ3uMMdRrH5 y1/+cr31tsVx9aeeeupwrWtda7jQhS60x7NPJQsPLnnJSw6/8Au/MLzpTW8aFyWEEEKYJuJ5CCGE EEIIIYQQliXieQghhBC2FAL6ueeeO4rgRxxxxHhk+8UvfvFxF/UBBxywSyy/4AUvOFzkIhcZLnWp S43v+T7uuOOGd7/73cNXv/rV4Tvf+U697bbGYoAzzzxzuNvd7jYeZ688COltd34rj4te9KLDpS99 6eF617veeJS7o9q/+c1v1tuFEELoeO973zu+3kJ/oq9p6dBDDx3e+c53RjwPIYQQQgghhBDCLiKe hxBCCOF8gYhONCZqnHLKKcPhhx8+3PCGNxyufvWrj7uwDzrooOEBD3jA8PznP398L7hjyfc30bxH eXzlK18ZBfETTjhhOOyww4Yb3OAGw9WudrXhmte85nCrW91qePCDHzz85V/+5bh7327z/bk8Qghh b/GJT3xiOPHEE4d73OMew13vetdd6clPfvL4t/jSEEIIIYQQQgghNCKehxBCCCGEEEIIIYQQQggh hBBC2PFEPA8hhBBCCCGEEEIIIYQQQgghhLDjiXgeQgghhBBCCCGEEEIIIYQQQghhxxPxPIQQQggh hBBCCCGEEEIIIYQQwo4n4nkIIYQQQgghhBBCCCGEEEIIIYQdT8TzEEIIIYQQQgghhBBCCCGEEEII O56I5yGEEEIIIYQQQgghhBBCCCGEEHY8Ec9DCCGEEEIIIYQQQgghhBBCCCHseCKehxBCCCGEEEII IYQQQgghhBBC2PFEPA8hhBBCCCGEEEIIIYQQQgghhLDjiXgeQgghhBBCCCGEEEIIIYQQQghhxxPx PIQQQgghhBBCCCGEEEIIIYQQwo4n4nkIIYQQQgghhBBCCCGEEEIIIYQdT8TzEEIIIYQQQgghhBBC CCGEEEIIO56I5yGEEEIIIYQQQgghhBBCCCGEEHY8Ec9DCCGEEEIIIYQQQgghhBBCCCHseCKehxBC CCGEEEIIIYQQQgghhBBC2PFEPA8hhBBCCCGEEEIIIYQQQgghhLDjiXgeQgghhBBCCCGEEEIIIYQQ QghhxxPxPIQQQgghhBBCCCGEEEIIIYQQwo4n4nkIIYQQQgghhBBCCCGEEEIIIYQdT8TzEEIIIYQQ QgghhBBCCCGEEEIIO56I5yGEEEIIIYQQQgghhBBCCCGEEHY8Ec9DCCGEEEIIIYQQQgghhBBCCCHs eCKehxBCCCGEEEIIIYQQQgghhBBC2PFEPA8hhBBCCCGEEEIIIYQQQgghhLDjiXgeQgghhBBCCCGE EEIIIYQQQghhxxPxPIQQQgghhBBCCCGEEEIIIYQQwo4n4nkIIYQQQgghhBBCCCGEEEIIIYQdT8Tz EEIIIYQQQgghhBBCCCGEEEIIO56I5yGEEEIIIYQQQgghhBBCCCGEEHY8Ec9DCCGEEEIIIYQQQggh hBBCCCHseCKehxBCCCGEEEIIIYQQQgghhBBC2PFEPA8hhBBCCCGEEEIIIYQQQgghhLDjiXgeQggh hBBCCCGEEEIIIYQQQghhxxPxPIQQQgghhBBCCCGEEEIIIYQQwo4n4nkIIYQQQgghhBBCCCGEEEII IYQdT8TzEEIIIYQQQgghhBBCCCGEEEIIO56I5yGEEEIIIYQQQgghhBBCCCGEEHY8Ec9DCCGEEEII IYQQQgghhBBCCCHseCKeh7DD+Pa3vz1885vfHL71rW8N3/nOd+qfQwghhBBCCCGEEEIIIYQQQtiR nO/i+Te+8Y3h3HPPHb74xS+O/99fxDzC5H/9138NX/jCF4avfvWr+81zhfOPr33ta7vayv/8z//U Py+E/X39618f/v3f/334yEc+Mrzzne8c3v/+9w//8i//Mtrp/tT2QgghhBBCCDsX8x5zJnMn85wQ QgghhBBCCGEVRvHcTlQCGmFtmfQf//Efw5e//OXxBgQ3///MZz4zfP7zn195cvre9753eNjDHjY8 8pGPHN71rneNO2K3O8rznHPOGU455ZThoQ996PDqV796FD5D2AhnnnnmcOyxxw5PfOITh7POOmvp tqKN/ud//ufw13/912Nbu8td7jIcfPDBwyGHHDLc+973Hk466aThPe95z8ptN4QQQgghhLDvYkH3 eeedN3z2s58d56cWzv7rv/7rOJ/f7PmpBeRiBJ/73Oe2dJ5hjvS2t71tePSjHz3GGP7hH/6hXhJC CCGEEEIIISxkFM8J5895znOGo446aql03HHHDa95zWvGG3zlK18ZXvGKVwy/8iu/MhxzzDHjbtZV 8NkrX/nKw9WvfvXhBS94wbhKfLsjSKEcfv7nf3647GUvO/zu7/7u8N///d/1shBW4hnPeMbw/d// /cNP/uRPDm94wxuWCkIRzrXv5z3vecPP/uzPDpe5zGWGy13ucmObu8pVrjL8wA/8wHDDG95wePaz n71rQUwIIYQQQghhe2Ne/U//9E/DU57ylOFXf/VXh9vd7nbj/PSOd7zjcPTRRw8ve9nLRnF71ROt lsXC3Xvc4x7jYl35WHbh70bx3GIbP/qjPzrGGF784hfXS0IIIYQQQgghhIWM4rlJ833ve9/hYhe7 2HDJS15yuPzlLz9c8YpXnE0/9mM/Npx22mnjDaxef/jDHz4Kcte+9rWHF73oRbt9gVXthGQrvu1+ tSu7Z7uK557Dbt13v/vdY/n1RDzfGATfL33pS8OHPvShsYxr+e5U1iOes1PleOtb33ps34Tyxz/+ 8WNbE0iy6/wRj3jE8OY3v3mPtinAZaeI0yHcgwgfQgghhBBC2Lcxl7LY/Wd+5mfGefqlLnWpcR5/ pStdadfPP/zDPzzc//73H1/ntBlz8N/6rd8av8diXXMPO9EbBHvzPMlO+L1JxPPNRxl/+MMfHmM8 6m+zFmCEEEIIIYQQwvnFKJ7/27/927ga/QIXuMBwtatdbbjPfe4zPOQhD5lNjkB705veNN7AO71P P/304Ta3uc0owBOTe+x4JbZf4QpXGJ7//OfvMTHfruI54VLg4dKXvvS4mr8n4vnGIOK+/e1vH256 05uOCzlOPvnkesmOZD3iOQHcrg92qm1rg45oVMYSW3XN1PvOte2nP/3pY+DpFre4xfC3f/u39ZIQ QgghhBDCPoQ5wgtf+MJxfn2hC11oOPDAA8dT4k488cThWc961niU+UEHHTTOKyyc90onIqh5wd5E HMAC3rvd7W7DBz7wgd3uL/5gLm2u7JVUe5OI55vPpz71qTH+I8ZjYbZX+4UQQgghhBDC/sRu4vmF L3zh4a53vevKO31NUE2YvvjFL9Y/Dc997nPHiavjov2/iuNz4jlhzwrmVSfxPkcM9O+UIDiHa5ug uMznBCUEGy5+8YsPJ5xwwm5/WySeu7e/S8t8D1refGbZ/C1Ly8+cgDqHa31m1c8tg/z8/d///XCj G91o3K0g0LOv0cqNja7n+Zudzn223b+v7/WI53Z4OCVC4Oznfu7nxp0ly0I8f+pTnzpc4xrXGBcy nHnmmfWSPWjPtYp9hxBCCCGEEDaO8bcj0m9yk5uM4/8b3OAGo3jcz8GN14mf5qgW19qR/ju/8zvj iVNrjd/bHGWt6xq+R4ygnnBlt/L3fu/3Dpe4xCWGxz3ucbv9bVXq/GNV8bx+fhX6uXR9xkW0z7X5 3t5kvXGD9rllyuHss88ebnnLW44xnsc85jERz0MIIYQQQgj7HRsWz02yCMM+44h2gp7J47nnnjve 92lPe9p4JBwRlIj3yU9+chTl2tFevXhuV6zJtXudddZZo9Bnlbqf+2PeKiZ33r3ePmfl/Ac/+MHx +x1ZVyek8igP/u4oau96NoH3mY9//OPjz3MTxvZcnoNw/j3f8z3Dox71qPHzfu/eJpxVPPd9jq13 f8dgS4IJym7uu9AWJnzkIx8ZPyOP7XP1udZC+bRnbnX0iU98YryvMjMJPu+88xbmR715Fs8vMPOP //iP4z36OoV7KMfPfvazs/XgZ3lQdpKf1b9XAbz85S8frn/9649BFcEcf1cOi+xAuXs2z6msp8Rl n3cfqS7kgDz4mzxP1Y1n9PePfexj4/M7acHzs/25+ykHefr85z8//l/e1Of73ve+sXzku+H+/v7P //zP49/V9znnnDPat13gy4rn8u375NNJEdq23eOve93rdpVlC/SoA/lrgS339Ty+206Cq171qsNP //RPj69kUC7qur6zULkKuH30ox8dbULZsBF5WJTPEEIIIYQQwt7BnMv43RzUCV5//ud/Xi8ZMVcw rj/mmGPG+dZP/dRPjadVtTG+OYF7tXmVuYhxvTmM1zmZK/RzmClajEAyT+pjBI5rJ5ybT8uD+Yl5 0bLHf8u/OYa8me+Yy5o7ffrTnx7nOc9+9rPXFM99vs2X+vmLe9a5TkX5mHeal5v3ex5l47ud8jWH 51MG5t3yK9+OP1dG5ol1vrwIZaosfaf7+lkZyodnERfx86K5mHI0j3Ndm8eJv5iP13iDa9tc+x3v eMe4QEOM56EPfegYT1CHi74rhBBCCCGEELYTGxbPTape//rXjyuOn/nMZ44TTiKaXebehX7IIYeM R7Jd9KIXHf9vcmUy28TSJp5b9U5oJ5oS++TnF3/xF4df+qVfGsVpYqEJZcWk3WTPO918zpF0d77z nYdf/uVfHn77t397eOlLXzo+Tz/x891Wo3vXs8n0q171qvE7fIZQayI7N3En8Hsuz6G8LnjBCw43 v/nNx3e6uZ+yrOK5fLzxjW8cd/He7373G8v47ne/+3DssceO32/SXjE5JVKeeeaZw5Of/OTh3ve+ 93jk3eGHHz5+t136ynoun1MIpMgjEdQz2sn8wAc+cLyvMnMkv3prddMjP+qaWGwRxFFHHTV+zjF/ /q/uTZqbuO3zysCR9srr1a9+9TjZ7sVoz+3I/+OOO244/vjjx8/KmwDKPe5xj3EXxEUucpFR9HWN exF052AfystzEpotVKi8613vGr9LEhiogRFl7iQB9mz3e/93QaO3ve1tY314RYF6PPTQQ8d3BXp3 +N/93d/tsfhA8MR9HvvYx475Z++nnHLKcOSRRw5HHHHEWI8+AwEq+Tv11FPHe7IR9a3OXvnKV47P 5Wi8ZcRz+VZPv/EbvzEcfPDBwwEHHDD80A/90HCve91rtFXfoT7UgTyw+5e97GVjGQrmqM9f//Vf H490FBT5wR/8wTE/8qINaOMNZSbYZpEIO2VLysbnlZXgytTCghBCCCGEEMLeo81BzVHNpds8Ywrz lNe+9rXD9a53vVFof8ITnrDrtLQ2rzInMqdwnbmMOcwDHvCA4a/+6q/WfC2Z+YrP21lu3mqh7l/8 xV+M8wnzR3Npu+O9l938xPHt5vVr0RbOm3vKm3mTOam5ym/+5m8OZ5xxxjhvuuY1rzkrnsuLOZoT zszrfF4yNzZnN+edE8HN9S2e/rM/+7Ph6KOPHuMV5oTmdk960pOGv/mbvxkF8roIu+X5D//wD8c5 2mGHHTbc6U53Gudn5ormy/+PvfOAjuO4srYcdr2Ou2vLSc6yV/otOVu7ltdWWGfJYS3JUbZsS1YW FZgzQYI555xzJgjmnHMmmEGCIAmQBMCctM7vn6+ggnp6ZoDBkAAGwr3n3CMKPd1dXVUd7ruvqsKJ 1eUB058YRteuXV27c17qmzgKWuy3v/2t02dcZzwthl5E93Ne2ojyUwdcD+2B5sNQ9/qeY/BbYi7U OQnWaHXaj/ZkH5IJwtctCIIgCIIgCIJQG3Hd5jkmGqLsYx/7mP3gBz9w5iJiEiF3zz33uDXW3v72 tzsBzwh0puLGCCUjGmHozXME+09+8hO3dtaXvvQlN+oYIY/xjnn3wAMP2Nq1a6PEJAYto3IxgTEI MeDJML/rrrvsjjvucGYhxjZGYHAqMYxjrpdjsx+kDJi1P/rRj9x67onEMsKS60IkYki+6U1vctd+ 9913O5OXaw+a52TUP/jgg04YUy6u684773T73HzzzW4qbYz88IhqTE2SDLhuhP9tt93m6uX22293 o4+pG9arY4RysgKb+qAuqWMEL6OJP//5z7s16ak7Rh3wN4xnRhMEgbFLkgSimjqmXTFxKRPH/exn P+uCAGTPY+rSNhjdTzzxhN1yyy3u+snI92Y0pj+JDdQH63EjtqlzzFbqljIxLT51TNmYNpzAAn0g EQjyEMRgX8oVDpRwTo6P0GcqcgIX4aUG6L9cC/0HI98b1JR75syZLghFX+GaGaFBHVAXBGYwjVlf MBikwqAePny4+z3t+O1vf9u1JSY45aQ83EO0PwY0SQNcL32R3/lrYVo81gykjZIxz9lGIIj7jXPT T9mX9qav0i6Y3gRdnnrqKXc+gk20O30X45v+yr4kvtAW1AlmOoE1DHZA/Y0aNcpdF7+lzEwPSbnp p7Q9SRZr1qxJup8KgiAIgiAIglB5oFfQOXz7YyKHE6KDYBtaAF2MXsd89kndjL4m4RfdhDb6/ve/ 77Q8GoZvfZLew3oxDBKSve7CwEXzYC6jmdGc6Lw3v/nNLkkXfYIBHS/5OQxMXHQlid/oMMqEBvHx A46PxkbrxzPP0S+MyCf2gO7iN+gtdBLahf9Hu6K3wjEBjGH0N/EMr6E5J3VC/XAtDBjg+BjoHpSZ hGI0FpoKXUh50XWcj/3QU2PGjHFxi2QMaGIWXDt1gInP/hyP43IOtvkEaM4dBLqM6yChHJ3NdXgd R3sTq+C6qGPajnpAaxNXIZaADiauQBtyDv6fNiQ5PZmyC4IgCIIgCIIgpDuu2zwnOxpDGSMYg4/R txiGjKDFGMeQQ1AxJRsjpjEkmY4d0Yqw8uY55jr/xYAk25tRsBAhiLHH9OhkqXuzk329cYfYZV+M XUZOk3WNiUpmPIIdM5bzevOOjG9G9HJMzG32x0wki5rjISTDI5I9MIcZBYwIJ8hAnWHqkn3PCHYy yoPmOYKSuvn617/ujk85yLgnKxxxSr2Q4c30dx4YqRwf0U9SAYYtQpVMb4x2TFGMSa6ZbPuwAZwI 7EOAgrXJqJMmTZq4+uJcZN2TFIBRikmL2emFL3WxceNGV2e0Je3M7xmBQF2QKIG4pq65LqZ581PA cWwMXMQ7wRKfhU8dkw3P+bhOL7RpG9qdkdwIeOqH0cz0k9WrV5e7nhoBIEb4kzCBIc/ohWDAg8x6 2opzclyCF2THB0EgiEALdUEf9n2G0QcEBegzBHvI8CeZgDpgH37POWlzAi1+RgDuBUz6D3/4w66v EJggMERfpg4pL6M2mFqP+iAIQYCJ7H2CJ9QfbUwQhjqkPyVjnlNuRotMmzbN1R/3F4GUXr16ub5K +7I/ownYjrH+wgsvuIAZpjr3MUEfkiwoO0EUkmTo45SVZArANPAY6tSn76fMAkG5SYhgX7ZxbxKE EwRBEARBEAThxgMtNXjwYKcn0DtMB16Rkcm3P7oErcA03IwQB3y3o8fQH2gYDF7iBCRvoydIaI43 K1wQGLPoeAxp/3t0BHoCTYuuQk+jMdEnaPiKRrOj99BvzJqFzkB/oo1JOkdDDhs2zGkb9BSj2sPm OVqdBG6S59HE6F6ukzLxd46LRqdcmMSUO5iAgLZjVjk0OmY5M6yRsIBOJ4aBgY32Z1AB5raPKZDw z37od47PeZhxD93E+dFTzFjn94s3UjwM6gsNx+hv6piEfXQjdYmOq1evnqsj+gNJ7kGQ+MBMAtQT 5WUUPDPCUR5GnDMCH93KdaIRiVVQJv7Lb0jMQP8TS6H9aE/Oi46sqM8JgiAIgiAIgiDUBkSZ5xhz GIQIOMRTPGL+elEN4pnnCCaEIgYiQhYTFGMRMxDTjW1ehHrzHHHLqG8ymxHN7AsZ4UrZMH3JZvbZ 6ByDNbkwFRG+GOWMdPbrqSGMEbuIfM6NCeingQua55QNww9BixhmP/ZPJPowJSkX4p/RuByDwIAv L/sFzXMCEZjzmNSMSMawhNQhohlBivBErHuwPhlBAISuF9DUG8fHDKYOGM2LWEXwE4RIZlQv5jmj EAgyDB061AVLOB7lQeiScMA5CQQggL0BzCgBTHGCJxjTmP9+LTh+QwCDxADakSQBTG7KQ11Q5+zL Nkbc077UM8Kev0GO58/FfpSJY2BSUx6MarYH+00iYMrT1hi29ImgOU49Un6OSUCEoAmJHMG6Y9p/ tpNM4bP+6RPUN32UUfeU168bT7lIXiBogqlNX8T49tOaB81zttGuJGDQF2hT+it9iUAXowboUwSw mMHAt43vy7Q1wZFkzHNA+TgPo9sJerE/CQHBuoxnnvv7l2sgOEZQhWCaTwrwbcu/MdS5NpIqSKTw /dSvIUjghbZg9EMwIUMQBEEQBEEQhBsHvsFJzuXbG41JQnNFILGZBGc0LaYuGhYEzXOOhflKsjPa hu99vvUr+q4Pm+foi6B+RPegZ9GKXp9UdEx+h2mMHqJcGMRoZ5K22YauYpQ1OpAYQNg85/pIWGYb sQUSgbkmr1/4N0taUW7qkSnq0cmAsq1atcrpHmIfmOF+TXH2R3dhonNcfoNO8snDlAktRl2g9dDz /pppgwkTJrj657zowoqSCIA3z2+66SYXEyE2gm7kuNQHsRHiK2hYdDXbANuJ2RC7Qfeic9HEvg7R p2hqEu0pDyPsiRNQJh8LYTuGP/VIIj1J6vy9ovYTBEEQBEEQBEGoLYgyzxFeGOhkqmMuxiOjV4NG bzzzPAhMYwxHjEP+Hc6iDk7bjlHnRZ0HghJzG9MX8Ys4Bn6Kbs6LMUe2OL8NAvMO4xXTmOnIME9B 0DxnymoM+soCkYzgR1QzJV0QQfMcQcuIey+6PRCnTPGNYYqZzTUC6ocEBR8QYAr1cJ0BsurZjzrB zA3XWzxQD5j5GPLhkQLUHcY24pjjYm770cWIfcQxYj8jIyNmZgJMWAIPGKyUGfEfLDNCntH11BVr vjPamvagbpgKLnw86o+yMGIdQU8QKFkg6smip19gjvtp3mkvRgMwtTijCOgz9EuSBHxwguAGQQvq id/6OsXs9vcEbRmua4IEGM2srUd5uUcYqc/fg+Y5SRK0bbg9CT5gMhN8oA4TTU2PCU79JmueA9qZ +sM8pz/SFh6JzHMP+iz1gHlOezGSPQjqgSkLubdZToDtGP7BoAlLJBB4IaiCca+AiiAIgiAIgiDc eKAvMWzRXJieJIdXBJKA/T4kfPPtDoLmOWYwM26FtXZFiGeee2C2oj8wz4klJAsMamb9QoejmyhX OIkc/YNWJiE8aJ5zfmbl4jrZv0+fPnHXhEerMdU5pjO/9VOecx70EvESzGgS2IPwiePoHq6NeAPT 4gNMd7Qto7k7derk4i/BpHDaingASQro6rDejAdvnqNTSeQOJ5lTD8wUwLVSFyRnAzQecRfaBe1P PCYeiGcwfT36luR0lt3zIH5C7AcdSPJDebPDCYIgCIIgCIIg1EZEmed+zTGmX0YwxiPmIcagx40y zxG2ZHmHtwMMzqB5jjBlqjGyvTEFGU3M9GGYkEGSHY/o98dnSnYQNM8RlGFjOxkka54z/RoBiXD2 OPtz7dQNwhWTEiA8CTT4dcZIEAhfFyQIwFTaBCQQv8lM3Y4pTH09+uij4U2uzJibiHrqizXuMH4B I4opD2uzca1M1xYuDwkVZNMj3jF5g+XhWpn+za9vTmY8Qv++++5zJnlY6F+Pec6+1I1fS476Iwue AA1GPf2buqYf0ycaNWrkghX0KYIvBDQYIY8RzH6AUfoETwgeMR1dPGAa054EIKir0aNHuwBN0Dwn wONH5QfB/cSae9Qd5fGj1sMYOHCga8N0Mc+5DoI8fsQ80+Az2oLACs8F+rzMckEQBEEQBEGoelSV ec5U5KwxHtZsFaEqzHOuCc2B9vj1r3/t9H4YxBOIH6Czg+Y5RjlJ1iSKs775hg0bEl4T2pZzoOvQ sWga6oqEYXQhyeicO6yJMdQzMzPdtRGj8NqL2ADxB5YHQ5OhL9nG9TDyPJmR/GF485x4A+Z8GBjw aHe2Uw/e7GfUPwMIaHOWE0tkfFOPtA2/I87DObyOlXkuCIIgCIIgCMIbHVHmOUIQAxQhhsEcj6yd FszQrinzHKHJdGyMpMYkZWQz1xAkU7IxYhpRSfkwmUE6m+cIUQxURhjz9wceeCDmuiAJDohvzGim fyeZoCKkap4TMGDUNW1IfYbLApkSjvahD1GnYQHN/3NdlJcZDrg2TOXwCHhwPeY5IDCAGU3d0zep GwI21CWjBDCeWWOO5ATKzXUTzCHQQb2zXhzt4AMYlJt+RqAlmHEfBEY7JjjBJY7Beut+6r+KzHNG 4lOv1B31nsgUTzfzHDAdICMkCCSRmMD69RyPUfjct4zU8NPfC4IgCIIgCIJQNUBHM+sa+hQdlIx5 Hpy2HY1BkjRIV/Oc6c5/+ctfuutDu6DZwkhknhPzYMp0yoRWRMck0ijHjx9350CLYrjzO+Ig6GFG nqN9wnoYEmNgGTOSou+6666yNdMx3ikTms8nybPOOLN4kYzMaHOujQSIRGUKIxXznLIQT3nooYdc PyERIaxNPfgtJj+xAXQ5SeQkjAOZ54IgCIIgCIIgvNERZZ5jsLFGeHga7fJQU+Y5go31uRgtj4nM aGGy5RORUc6MQgbpbJ4zndrLL7/s9uO6GEEdvpYgMWQR9MlcQ6rmOfWG4c21kqgQLkOYJCnEM/Mx kQlWcCyuK5i9HsT1mucEgZo2beqCCb/73e9csGfkyJFupP7vf/97ZxgT/CBoQlCDqdQZ7c20dJj7 9IlgggjT1BEkof8lujcIBmFMM6qetiMwk6x5zoh3TGfOQYAiEdLRPCdpgBEq/I66JlhEn2ZqQGYa oI45P4G4ygbcBEEQBEEQBEFIDmgM9AJ65m1ve1vCpF8PNDWmJ7oFs/eee+5xo5JBuprnTIOOZiNZ uWHDhu44YSQyz1kDntnHiFswah0dlMio5hj8jgRykgv43datW502RbORNBzWwGESb2AtcdqFuiNu woh2tD51yuh3ZvAijsFyYyx1xTJz6NBE5QoiFfPcxylIxGff+vXrx2hTD8pMHAD9/9WvftVNDY+5 D2SeC4IgCIIgCILwRketNc/JBkf0IvQxxln7jP0TEaGKYQrS2Tw/evSoNWjQwNUnRiRBi/C1BMm6 bazJ7bPAy0Oq5jntxqhoDFFM6XAZwqQ8Xlh7ENhgejjqjGNRFq4NozuM6zXPEfpM0c/65gSBRo8e 7bL6MYE5FgEJAkKtW7d2owaYZh5jGFOa9qKvBPshQRZGnjOlOyMC4gETmeAIbU7bcU8ka54T+KAP cw76sZ8uPox0NM8Bx6E+Gb1Bn+YaCP4QlCHgxv70aT89viAIgiAIgiAINx7oGMxOtDP/Lu/bm294 zGgSYNHF6GOvBdLVPPcjz0kyZ0kub/YHkcg8J+aBRuGaGHnt4wrxQCI450C7oqX4HcnAxDSIP2Dg hzVwmIsWLXKxEn8O/os24xqYeQy9ysxnJHdjtlNW4hvUVaDaRY0AAIAASURBVDI6LxXznDYkJsIg BOIY6POwNvXgt+hYEgWYvY2Z2zTyXBAEQRAEQRCEuoJaa54zUphMabLBGd2KGESMJiLi0Qv2dDbP aYuMjAxntmL8YpKGryV8XRwrkfAPIlXznCxz2peseEZwU1/hcgQZLg9tOnz4cLvtttvcSAjOz2iB r33tay6oEDaLr9c8BxjZ3//+9102f7169dy6dHfffbdbv53zUaapU6e6ayJggZHu178LB1KoCwx/ gj8LFiwInOV1EEiYN2+eG21NgGHw4MFJr3nOentMH08ghuSEoIEdRLqZ5yRI8KwgaEVCAtdFPTAt Ic8F2oClFbhHaXsCeJUNugmCIAiCIAiCkByYEYpl2EjKZVrwsO4IAk2ENkEjoc3Q9F7/pat5jlZm 5Db7VXbNczQKup1p09GZaN9EGpp6QYei4UjE5nfUCTqPUf0sD4f+CevgINFK1D8kYRzNhMmMXqLu iQ+gvTCz+/fv73QomjvZWeVSMc8BI/CfffZZF8dAg6Lb4oH9McaJedCnOIdvQ5nngiAIgiAIgiC8 0VErzXNw5coVtz4YBjhrhnlTNAz+RhAguH7YjTLPEascg7Xlgrge85zrwqDm74hzjFeEaxg+c536 SjaQkap5TvCAbHOCH4zgRviHAw38P3UMg+Xh7xjh3/ve95xAZ2QD62CT8ED9PfHEEzHHC5vn4eSE ZMBoAQIr9MvPfe5zri4JsNAulI/zMfUe66Azwh8jnyAM2fdh85pAA2XHBOb6w6P8fTCFfkB7MxU8 5efvyZjnjD547rnnXGIBwSnWTg/XL2WmH3E9NWGeU/awec5Ic9Y2pz8x9X24j3OdXC+jNqgXAkHh axcEQRAEQRAE4cYALdmyZUunvSEjnON9f6M10PwkEPOdjp5euHBhmTlaneY5iePJAr1BQjHaDA1H YnPwuIA6IHGbJOqgec7vSOZFq5EsgOYO6xdAfWEuk9jMiHB0HWB/ZtZi2na0ETGFsGbzv+O4Pv5A edBKv/nNb9wU8IxgD+7Hv9Gov/jFL1xswY+oj3fsIFI1z9HJvm1YSi1egjPnJhGDEfaY53/84x/L 4jAg/zXznPO3aNHCDWwQBEEQBEEQBEF4IyHKPGd0LaYmhhqZ2YlIlrUXgxWZ5xMmTHBrTWOCsp4z WdeYfl6gpWqeY4ojEhG/mI6YshiDfoS5z/DG8EOQs16XN4NvlHmOIUpWP4Yqothf1/WY59QpI3aZ Sg0xSpY3I5q5Fq6Za+MaMVwRwxizZI+HBW88pGqeM0U+U5fThpjoBBpod8rDfvQFMuYHDBhgffr0 scOHD5cZ1EzVzZTdiHPaisAJ5WfUN1MKUocEQDB5PdgXAxlDG7FOG9Ev/PmSAfVEBr+/ZvonRm9Q 2HMNrPFHvyJwQ/8fM2ZMTLIC5yWphO1f/vKXXZCGuuHvkPuBNmJ0Nn3x+eefLztPMuY5fYeyYlJj NBPEog6pV/oJfYf7ir7ASIfqMs/pc5SLduK66a+ck7qlbQnAUC8Er3hukBTBtfh+6gNF1AntTxAr fO2CIAiCIAiCINw4oBsYTY7Je++99zrtwjc+uoAkYL7RMWfRKGhRdBI6AE3pUdXmOcY9GoHkZGaT Q39RtorOgc7ANGYNbo6N0YzJ62c/Q3tx/cx+RfJA0Dw