Abstract

Metallic materials typically experience significant strength degradation at elevated temperatures. Traditional strengthening methods, which rely on thermally stable particle dispersion, exhibit limited effectiveness owing to the challenges in suppressing thermally activated dislocation motion. This work introduces a strategy for achieving exceptional high-temperature strength through a thermally stable nanoscale eutectic cellular network (ECN) enabled by additive manufacturing. A near-eutectic AlLaScZr alloy is developed for laser powder bed fusion, incorporating an Al-La nanoscale ECN and dense intracellular nanoprecipitates. This alloy demonstrates excellent printability and remarkable high-temperature yield strength above 0.6Tm (~250 MPa at 300 °C), outperforming…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help