Abstract
Laser-driven neutron generation is an attractive alternative to more established methods for compact, short-pulse-duration neutron sources with applications in medical science, material science and imaging. Despite extensive investigation of various techniques, achieving performance comparable to nuclear reactors or conventional accelerators remains challenging. In this work, we generate a stable, high-repetition-rate laser-driven neutron source reaching a record average flux of 7.8 × 107 n/sr/s, improving on other existing laser-based sources by more than one order of magnitude. Our approach is based on a two-step process where electrons are accelerated to relativistic energies via laser wakefield acceleration (LWFA), and subsequently generate neutrons through Bremsstra…
Abstract
Laser-driven neutron generation is an attractive alternative to more established methods for compact, short-pulse-duration neutron sources with applications in medical science, material science and imaging. Despite extensive investigation of various techniques, achieving performance comparable to nuclear reactors or conventional accelerators remains challenging. In this work, we generate a stable, high-repetition-rate laser-driven neutron source reaching a record average flux of 7.8 × 107 n/sr/s, improving on other existing laser-based sources by more than one order of magnitude. Our approach is based on a two-step process where electrons are accelerated to relativistic energies via laser wakefield acceleration (LWFA), and subsequently generate neutrons through Bremsstrahlung emission followed by photonuclear reactions in a tungsten converter. Experimental results, supported by Monte Carlo simulations, show a neutron flux of 3.0 × 107 n/cm2/s near the target, on par with some compact accelerator-based neutron sources. Additionally, a direct comparison with the target-normal sheath acceleration (TNSA) pitcher-catcher scheme, performed on the same laser system, reveals a significantly higher total neutron yield of 3.9 × 108 neutrons per shot, outperforming the TNSA scheme by several orders of magnitude. These findings represent a significant advancement towards the development of practical laser-driven neutron sources and highlight the advantages of LWFA-based neutron generation for future applications.
Data availability
All data supporting the findings of this study are available in the Zenodo repository at https://doi.org/10.5281/zenodo.17436431.
Code availability
The code used for the simulations in this study is not publicly available due to ongoing development, but can be made available from the corresponding author upon request.
References
Rinaldi, R., Liang, L. & Schober, H. Neutron Applications in Earth, Energy, and Environmental Sciences (Springer, 2009). 1.
Zimmer, M. et al. Assessing the potential of upcoming laser-driven neutron sources and their practical applications for industry and society. Eur. Phys. J. 139, 1107 (2024).
Szabo, J. & Boutaine, J. Some examples of industrial uses of neutron sources. Radiat. Prot. Dosim. 70, 193–196 (1997).
Anderson, I. S., McGreevy, R. L. & Bilheux, H. Z. Neutron Imaging and Applications (Springer, 2009). 1.
Kardjilov, N., Manke, I., Woracek, R., Hilger, A. & Banhart, J. Advances in neutron imaging. Mater. Today 21, 652–672 (2018).
Strobl, M. et al. Advances in neutron radiography and tomography. J. Phys. D Appl. Phys. 42, 243001 (2009).
D’Orsi, B. et al. Laser-driven proton sources for efficient radiation testing. Sci. Rep. 15, 27181 (2025).
Favalli, A. et al. Demonstration of active neutron interrogation of special nuclear materials using a high-intensity short-pulse-laser-driven neutron source. Sci. Rep. 15, 724 (2025).
Jones, B. Clinical radiobiology of fast neutron therapy: what was learnt? Front. Oncol. 10, 1537 (2020).
Kim, Y. et al. Application of neutron grating interferometry and tomography to the nineteenth century Korean copper coins. Sci. Rep. 15, 14848 (2025).
Harling, O. K. & Riley, K. J. Fission reactor neutron sources for neutron capture therapy-a critical review. J. Neuro-Oncol. 62, 7–17 (2003).
Taylor, A. et al. A route to the brightest possible neutron source? Science 315, 1092–1095 (2007).
Colonna, N., Gunsing, F. & Käppeler, F. Neutron physics with accelerators. Prog. Part. Nucl. Phys. 101, 177–203 (2018).
Anderson, I. et al. Research opportunities with compact accelerator-driven neutron sources. Phys. Rep. 654, 1–58 (2016).
Bauer, G. Physics and technology of spallation neutron sources. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectromet. Detect. Assoc. Equip. 463, 505–543 (2001).
Bermejo, F. J. & Sordo, F. in Neutron Scattering—Fundamentals, Vol. 44 of Experimental Methods in the Physical Sciences (eds. Fernandez-Alonso, F. & Price, D. L.) 137–243 (Academic Press, 2013). 1.
Vainionpaa, J. et al. Technology and applications of neutron generators developed by Adelphi Technology, Inc. Phys. Procedia 60, 203–211 (2014).
Vainionpaa, J. H. et al. Development of high flux thermal neutron generator for neutron activation analysis. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atom. 350, 88–93 (2015).
Alejo, A. et al. Recent advances in laser-driven neutron sources. Il Nuovo Cim. C. 38C, 1–7 (2016).
Alvarez, J. et al. Laser driven neutron sources: characteristics, applications and prospects. Phys. Procedia 60, 29–38 (2014).
Günther, M. et al. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science. Nat. Commun. 13, 170 (2022).
Yogo, A. et al. Advances in laser-driven neutron sources and applications. Eur. Phys. J. A 59, 191 (2023).
Key, M. H. et al. Hot electron production and heating by hot electrons in fast ignitor research. Phys. Plasmas 5, 1966–1972 (1998).
Daido, H. et al. Neutron production from a shell confined carbon deuterium plasma by 1.06 μm laser irradiation. Appl. Phys. Lett. 51, 2195–2196 (1987).
Ditmire, T. et al. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489–492 (1999).
Pretzler, G. et al. Neutron production by 200 MJ ultrashort laser pulses. Phys. Rev. E 58, 1165–1168 (1998).
Disdier, L., Garçonnet, J.-P., Malka, G. & Miquel, J.-L. Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys. Rev. Lett. 82, 1454–1457 (1999).
Hilscher, D. et al. Neutron energy spectra from the laser-induced D(d, n) 3He reaction. Phys. Rev. E 64, 016414 (2001). 1.
Willingale, L. et al. Comparison of bulk and pitcher-catcher targets for laser-driven neutron production. Phys. Plasmas 18, 083106 (2011).
Kleinschmidt, A. et al. Intense, directed neutron beams from a laser-driven neutron source at PHELIX. Phys. Plasmas 25, 053101 (2018).
Yogo, A. et al. Laser-driven neutron generation realizing single-shot resonance spectroscopy. Phys. Rev. X 13, 011011 (2023).
Abu-Shawareb, H. et al. Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett. 132, 065102 (2024).
Hatchett, S. P. et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076–2082 (2000).
Esirkepov, T., Borghesi, M., Bulanov, S. V., Mourou, G. & Tajima, T. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004).
Daido, H., Nishiuchi, M. & Pirozhkov, A. S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 (2012).
Macchi, A., Borghesi, M. & Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013).
Lancaster, K. L. et al. Characterization of Li7(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography. Phys. Plasmas 11, 3404–3408 (2004).
Higginson, D. P. et al. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions. Phys. Plasmas 18, 100703 (2011).
Storm, M. et al. Fast neutron production from lithium converters and laser driven protons. Phys. Plasmas 20, 053106 (2013).
Zulick, C. et al. Energetic neutron beams generated from femtosecond laser plasma interactions. Appl. Phys. Lett. 102, 124101 (2013).
Yang, J. M. et al. Neutron production by fast protons from ultraintense laser-plasma interactions. J. Appl. Phys. 96, 6912–6918 (2004).
Jung, D. et al. Characterization of a novel, short pulse laser-driven neutron source. Phys. Plasma. 20, 056706 (2013). 1.
Roth, M. et al. Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802 (2013).
Kar, S. et al. Beamed neutron emission driven by laser accelerated light ions. N. J. Phys. 18, 053002 (2016).
Mima, K. et al. Laser-driven neutron source and nuclear resonance absorption imaging at ILE, Osaka University: review. Appl. Opt. 61, 2398–2405 (2022).
Favalli, A. et al. Characterizing laser-plasma ion accelerators driving an intense neutron beam via nuclear signatures. Sci. Rep. 9, 2004 (2019).
Lelièvre, R. et al. High repetition-rate 0.5 Hz broadband neutron source driven by the advanced laser light source. Phys. Plasmas 31, 093106 (2024).
Osvay, K. et al. Fast neutron generation with few-cycle, relativistic laser pulses at 1 Hz repetition rate. Sci. Rep. 14, 25302 (2024).
Knight, B. M. et al. Detailed characterization of kHz-rate laser-driven fusion at a thin liquid sheet with a neutron detection suite. High. Power Laser Sci. Eng. 12, e2 (2024).
Scheuren, S. et al. Scaling of laboratory neutron sources based on laser wakefield-accelerated electrons using Monte Carlo simulations. Eur. Phys. J. 139, 726 (2024).
Pomerantz, I. et al. Ultrashort pulsed neutron source. Phys. Rev. Lett. 113, 184801 (2014).
Qi, W. et al. Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets. Phys. Plasmas 26, 043103 (2019).
Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).
Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).
Mangles, S. P. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).
Geddes, C. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).
Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696–699 (2006).
Leemans, W. P. et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014).
Picksley, A. et al. Matched guiding and controlled injection in dark-current-free, 10-Gev-class, channel-guided laser-plasma accelerators. Phys. Rev. Lett. 133, 255001 (2024).
Papp, D. et al. Laser wakefield photoneutron generation with few-cycle high-repetition-rate laser systems. Photonics 9, 826 (2022).
Leemans, W. et al. Gamma-neutron activation experiments using laser wakefield accelerators. Phys. Plasmas 8, 2510–2516 (2001).
Jiao, X. et al. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration. Matter Radiat. Extremes 2, 296–302 (2017).
Feng, J. et al. High-efficiency neutron source generation from photonuclear reactions driven by laser plasma accelerator. High. Energy Density Phys. 36, 100753 (2020).
Li, Y. et al. Micro-size picosecond-duration fast neutron source driven by a laser-plasma wakefield electron accelerator. High. Power Laser Sci. Eng. 10, e33 (2022).
Fourmaux, S., Hallin, E., Arnison, P. & Kieffer, J. Optimization of laser-based synchrotron X-ray for plant imaging. Appl. Phys. B 125, 1–9 (2019).
Ing, H., Noulty, R. & McLean, T. Bubble detectors—a maturing technology. Radiat. Meas. 27, 1–11 (1997).
Bubble Technology Industries. Bubble Detectors—neutron Dosimeters. https://www.bubbletech.ca/ (Bubble Technology Industries, 2025). 1.
National Research Council Canada. Calibration of Victoreen neutron survey meter with readout unit model 190N. https://nrc.canada.ca/en/certifications-evaluations-standards/instrument-calibration-services/ionizing-radiation-standards-calibration-services (National Research Council Canada, 2023). 1.
Ferri, J. et al. Effect of experimental laser imperfections on laser wakefield acceleration and betatron source. Sci. Rep. 6, 27846 (2016).
Agostinelli, S. et al. Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectromet. Detect. Assoc. Equip. 506, 250–303 (2003).
Allison, J. et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectromet. Detect. Assoc. Equip. 835, 186–225 (2016).
Soppera, N., Bossant, M. & Dupont, E. Janis 4: an improved version of the NEA Java-based nuclear data information system. Nucl. Data Sheets 120, 294–296 (2014).
Kawano, T. et al. IAEA photonuclear data library 2019. Nucl. Data Sheets 163, 109–162 (2020).
Streeter, M. et al. Stable laser-acceleration of high-flux proton beams with plasma collimation. Nat. Commun. 16, 1004 (2025).
Arikawa, Y. et al. Demonstration of efficient relativistic electron acceleration by surface plasmonics with sequential target processing using high repetition lasers. Phys. Rev. Res. 5, 013062 (2023).
Williams, D. L., Brown, C. M., Tong, D., Sulyman, A. & Gary, C. K. A fast neutron radiography system using a high yield portable dt neutron source. J. Imaging 6, 128 (2020).
Zboray, R., Adams, R. & Kis, Z. Scintillator screen development for fast neutron radiography and tomography and its application at the beamline of the 10 MW BNC research reactor. Appl. Radiat. Isotopes 140, 215–223 (2018).
Bergaoui, K. et al. Design, testing and optimization of a neutron radiography system based on a deuterium–deuterium (d–d) neutron generator. J. Radioanalyt. Nucl. Chem. 299, 41–51 (2014).
Treffert, F. et al. Platform development toward ultra-intense laser-based simultaneous hard X-ray and MeV neutron multimodal radiography. Rev. Sci. Instrum. 95, 123305 (2024).
Naik, H. et al. An alternative route for the preparation of the medical isotope 99 mo from the 238 u (γ, f) and 100 mo (γ, n) reactions. J. Radioanalyt. Nucl. Chem. 295, 807–816 (2013).
Rockafellow, E. et al. High charge laser acceleration of electrons to 10 GeV. Nucl. Instrum. Method. Phys. Res. Sect. A Accel. Spectromet. Detect. Assoc. Equipment, 1077, 170586 (2025). 1.
Nagymihály, R. S. et al. The petawatt laser of ELI ALPS: reaching the 700 tw level at 10 Hz repetition rate. Opt. Express 31, 44160–44176 (2023).
Tamer, I. et al. 1 gw peak power and 100 j pulsed operation of a diode-pumped tm: Ylf laser. Opt. Express 30, 46336–46343 (2022).
Glinec, Y. et al. Absolute calibration for a broad range single shot electron spectrometer. Rev. Sci. Instrum. 77, 103301 (2006).
ISO. ISO 8529-3: reference neutron irradiations-part 3: Calibration of area and personal dosimeters and determination of their response as a function of neutron energy and angle of incidence. Tech. Rep. https://www.iso.org/standard/82291.html (1998). 1.
Berger, M. J., Coursey, J. S. & Zucker, M. A. Pstar-stopping-power and range tables for protons (NIST). https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html NIST Standard Reference Database 124; last update July 2017; https://doi.org/10.18434/T4NC7P (2017). 1.
Berger, M. J. et al. Xcom: Photon cross sections database (NIST Standard Reference Database 8). https://physics.nist.gov/PhysRefData/Xcom/ Version 1.5, https://doi.org/10.18434/T48G6X (2010). 1.
Wang, S. et al. High energy neutrons from nuclear reactions driven by ions accelerated irradiating nanowire arrays at relativistic intensities. Phys. Plasmas 32, 063106 (2025).
Stuhl, L. et al. Continuous high-yield fast neutron generation with few-cycle laser pulses at 10 Hz for applications. Phys. Rev. Res. 7, 023137 (2025).
Yao, W. et al. Characterization and performance of the Apollon main short-pulse laser beam following its commissioning at 2 pw level. Phys. Plasmas 32, 043106 (2025).
Higginson, D. et al. Global characterization of a laser-generated neutron source. J. Plasma Phys. 90, 905900308 (2024).
Lelièvre, R. et al. A comprehensive characterization of the neutron fields produced by the Apollon petawatt laser. Eur. Phys. J. 139, 1035 (2024).
Jiao, X. et al. High deuteron and neutron yields from the interaction of a petawatt laser with a cryogenic deuterium jet. Front. Phys. 10, 964696 (2023).
Yao, Y. L. et al. High-flux neutron generator based on laser-driven collisionless shock acceleration. Phys. Rev. Lett. 131, 025101 (2023).
Zimmer, M. et al. Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source. Nat. Commun. 13, 1173 (2022).
Curtis, A. et al. Ion acceleration and d-d fusion neutron generation in relativistically transparent deuterated nanowire arrays. Phys. Rev. Res. 3, 043181 (2021).
Curtis, A. et al. Micro-scale fusion in dense relativistic nanowire array plasmas. Nat. Commun. 9, 1077 (2018).
Hah, J., Nees, J. A., Hammig, M. D., Krushelnick, K. & Thomas, A. G. R. Characterization of a high repetition-rate laser-driven short-pulsed neutron source. Plasma Phys. Control. Fusion 60, 054011 (2018).
Alejo, A. et al. High flux, beamed neutron sources employing deuteron-rich ion beams from d2o-ice layered targets. Plasma Phys. Control. Fusion 59, 064004 (2017).
Guler, N. et al. Neutron imaging with the short-pulse laser driven neutron source at the trident laser facility. J. Appl. Phys. 120, 154901 (2016).
Bang, W. et al. Optimization of the neutron yield in fusion plasmas produced by coulomb explosions of deuterium clusters irradiated by a petawatt laser. Phys. Rev. E 87, 023106 (2013).
Maksimchuk, A. et al. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation. Appl. Phys. Lett. 102, 191117 (2013).
Kitagawa, Y. et al. Efficient fusion neutron generation using a 10-tw high-repetition rate diode-pumped laser. Plasma Fusion Res. 6, 1306006–1306006 (2011).
Higginson, D. P. et al. Laser generated neutron source for neutron resonance spectroscopy. Phys. Plasmas 17, 100701 (2010).
Lu, H. Y. et al. Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields. Phys. Rev. A 80, 051201 (2009).
Madison, K. et al. Fusion neutron and ion emission from deuterium and deuterated methane cluster plasmas. Phys. Plasmas 11, 270–277 (2004).
Grillon, G. et al. Deuterium-deuterium fusion dynamics in low-density molecular-cluster jets irradiated by intense ultrafast laser pulses. Phys. Rev. Lett. 89, 065005 (2002).
Norreys, P. A. et al. Neutron production from picosecond laser irradiation of deuterated targets at intensities of 145°. Plasma Phys. Control. Fusion 40, 175 (1998).
Acknowledgements
The authors would like to acknowledge medical physicist Tanner Connell from the McGill University Health Center for the Victoreen 190N detector and the ALLS technical team: Stéphane Payeur, Marc-André Picard, and William Lévesque. The authors acknowledge support from NSERC and the Canada Foundation for Innovation. This research is also supported by the U.S. Department of Energy Fusion Energy Sciences Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education (ORISE) under DOE contract number DE-SC0014664. This research was enabled in part by support provided by Calcul Québec (www.calculquebec.ca) and the Digital Research Alliance of Canada (alliancecan.ca).
Author information
Author notes
These authors contributed equally: Simon Vallières, François Fillion-Gourdeau, Sylvain Fourmaux.
Authors and Affiliations
Advanced Laser Light Source (ALLS), Institut National de la Recherche Scientifique—Énergie, Matériaux et Télécommunications (INRS-EMT), 1650 Lionel-Boulet, Varennes, Montréal, QC, Canada
Simon Vallières, François Fillion-Gourdeau, Sylvain Fourmaux, Benjamin Poupart-Raîche, Nils Dietrich, Elias Catrix, Joël Maltais, Patrizio Antici, François Légaré & Steve MacLean 1.
Infinite Potential Laboratories, Waterloo, ON, Canada
François Fillion-Gourdeau & Steve MacLean 1.
University of Applied Sciences, Lothstraße 34, Munich, Germany
Nils Dietrich 1.
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
Nicholas F. Beier & Amina E. Hussein 1.
Lawrence Livermore National Laboratory (LLNL), Livermore, CA, USA
Nicholas F. Beier 1.
Laboratoire de Micro-irradiation, de Métrologie et de Dosimétrie des Neutrons, PSE-SANTE/SDOS, Autorité de Sûreté Nucléaire et de Radioprotection (ASNR), Saint-Paul-Lez-Durance, France
Ronan Lelièvre
Authors
- Simon Vallières
- François Fillion-Gourdeau
- Sylvain Fourmaux
- Benjamin Poupart-Raîche
- Nils Dietrich
- Nicholas F. Beier
- Ronan Lelièvre
- Elias Catrix
- Joël Maltais
- Amina E. Hussein
- Patrizio Antici
- François Légaré
- Steve MacLean
Contributions
S.V., F.F.G., and S.F. conceived, supervised, and performed the experiment, analyzed the data, and wrote the manuscript. F.F.G. and R.L. developed the Geant4 simulations. B.P.R., N.D., N.F.B., E.C., and J.M. provided experimental and data analysis support. A.E.H., P.A., F.L., and S.M. provided the infrastructure and financial support.
Corresponding author
Correspondence to Sylvain Fourmaux.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCo