Abstract

The persuasive capability of large language models (LLMs) in generating mis/disinformation is widely recognized, but the linguistic ambiguity of such content and inconsistent findings on LLM-based detection reveal unresolved risks in information governance. To address the lack of Chinese datasets, this study compiles two datasets of Chinese AI mis/disinformation generated by multi-lingual models involving deepfakes and cheapfakes. Through psycholinguistic and computational linguistic analyses, the quality modulation effects of eight language features (including sentiment, cognition, and personal concerns), along with toxicity scores and syntactic dependency distance differences, were discovered. Furthermore, key factors influencing zero-shot LLMs in comprehending and de…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help