Data availability
The HCP data are publicly available on the ConnectomeDB database (https://db.humanconnectome.org/app/template/Login.vm). The UCLA CNP data can be obtained from the OpenNeuro database (https://openneuro.org/datasets/ds000030/versions/00016). The TRT data can be accessed publicly (https://fcon_1000.projects.nitrc.org/indi/retro/yale_trt.html). The Yale Transdiagnostic Dataset can be accessed publicly (https://nda.nih.gov/edit_collection.html?id=3276). Data used to generate the atlas parcellation can be accessed at https://fcon_1000.projects.nitrc.org/indi/retro/yale_hires.html…
Data availability
The HCP data are publicly available on the ConnectomeDB database (https://db.humanconnectome.org/app/template/Login.vm). The UCLA CNP data can be obtained from the OpenNeuro database (https://openneuro.org/datasets/ds000030/versions/00016). The TRT data can be accessed publicly (https://fcon_1000.projects.nitrc.org/indi/retro/yale_trt.html). The Yale Transdiagnostic Dataset can be accessed publicly (https://nda.nih.gov/edit_collection.html?id=3276). Data used to generate the atlas parcellation can be accessed at https://fcon_1000.projects.nitrc.org/indi/retro/yale_hires.html. Source data are provided with this paper.
References
Allan, T. W. et al. Functional connectivity in MRI is driven by spontaneous BOLD events. PLoS ONE 10, e0124577 (2015).
Article PubMed PubMed Central Google Scholar 1.
Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W. & Bandettini, P. A. How to interpret resting-state fMRI: ask your participants. J. Neurosci. 41, 1130–1141 (2021).
Article PubMed PubMed Central CAS Google Scholar 1.
Petridou, N., Gaudes, C. C., Dryden, I. L., Francis, S. T. & Gowland, P. A. Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity. Hum. Brain Mapp. 34, 1319–1329 (2013).
Article PubMed Google Scholar 1.
Tagliazucchi, E., Siniatchkin, M., Laufs, H. & Chialvo, D. R. The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process. Front. Neurosci. 10, 381 (2016).
Article PubMed PubMed Central Google Scholar 1.
Esfahlani, F. Z. et al. High-amplitude cofluctuations in cortical activity drive functional connectivity. Proc. Natl Acad. Sci. USA 117, 28393–28401 (2020).
Brown, J. A., Lee, A. J., Pasquini, L. & Seeley, W. W. A dynamic gradient architecture generates brain activity states. Neuroimage 261, 119526 (2022).
Article PubMed Google Scholar 1.
Chen, R. H., Ito, T., Kulkarni, K. R. & Cole, M. W. The human brain traverses a common activation-pattern state space across task and rest. Brain Connect. 8, 429–443 (2018).
Article PubMed PubMed Central Google Scholar 1.
Gao, S., Mishne, G. & Scheinost, D. Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low-dimensional space of brain dynamics. Hum. Brain Mapp. 42, 4510–4524 (2021).
Article PubMed PubMed Central Google Scholar 1.
Gonzalez-Castillo, J. et al. Imaging the spontaneous flow of thought: distinct periods of cognition contribute to dynamic functional connectivity during rest. Neuroimage 202, 116129 (2019).
Article PubMed Google Scholar 1.
Kim, D., Livne, T., Metcalf, N. V., Corbetta, M. & Shulman, G. L. Spontaneously emerging patterns in human visual cortex and their functional connectivity are linked to the patterns evoked by visual stimuli. J. Neurophysiol. 124, 1343–1363 (2020).
Article PubMed PubMed Central Google Scholar 1.
Tusche, A., Smallwood, J., Bernhardt, B. C. & Singer, T. Classifying the wandering mind: revealing the affective content of thoughts during task-free rest periods. Neuroimage 97, 107–116 (2014).
Article PubMed Google Scholar 1.
Iraji, A. et al. Moving beyond the ‘CAP’ of the iceberg: intrinsic connectivity networks in fMRI are continuously engaging and overlapping. Neuroimage 251, 119013 (2022).
Article PubMed CAS Google Scholar 1.
Finn, E. S. et al. Can brain state be manipulated to emphasize individual differences in functional connectivity? Neuroimage 160, 140–151 (2017).
Article PubMed Google Scholar 1.
Noble, S., Scheinost, D. & Constable, R. T. A decade of test–retest reliability of functional connectivity: a systematic review and meta-analysis. Neuroimage 203, 116157 (2019).
Article PubMed Google Scholar 1.
Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Task-induced brain state manipulation improves prediction of individual traits. Nat. Commun. 9, 2807 (2018).
Article PubMed PubMed Central Google Scholar 1.
Greene, A. S., Gao, S., Noble, S., Scheinost, D. & Constable, R. T. How tasks change whole-brain functional organization to reveal brain–phenotype relationships. Cell Rep. 32, 108066 (2020).
Article PubMed PubMed Central CAS Google Scholar 1.
Jiang, R. et al. Task-induced brain connectivity promotes the detection of individual differences in brain–behavior relationships. Neuroimage 207, 116370 (2020).
Article PubMed Google Scholar 1.
Zhao, W. et al. Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity. Neuroimage 270, 119946 (2023).
Article PubMed Google Scholar 1.
Finn, E. S. & Bandettini, P. A. Movie-watching outperforms rest for functional connectivity-based prediction of behavior. Neuroimage 235, 117963 (2021).
Article PubMed Google Scholar 1.
Vanderwal, T. et al. Individual differences in functional connectivity during naturalistic viewing conditions. Neuroimage 157, 521–530 (2017).
Article PubMed Google Scholar 1.
Wang, J. et al. Test–retest reliability of functional connectivity networks during naturalistic fMRI paradigms. Hum. Brain Mapp. 38, 2226–2241 (2017).
Article PubMed PubMed Central Google Scholar 1.
Yoo, K. et al. A cognitive state transformation model for task-general and task-specific subsystems of the brain connectome. Neuroimage 257, 119279 (2022).
Article PubMed Google Scholar 1.
Yoo, K. et al. A brain-based general measure of attention. Nat. Hum. Behav. 6, 782–795 (2022).
Article PubMed PubMed Central Google Scholar 1.
Cai, B. et al. Functional connectome fingerprinting: identifying individuals and predicting cognitive functions via autoencoder. Hum. Brain Mapp. 42, 2691–2705 (2021).
Article PubMed PubMed Central Google Scholar 1.
Cai, B. et al. Refined measure of functional connectomes for improved identifiability and prediction. Hum. Brain Mapp. 40, 4843–4858 (2019).
Article PubMed PubMed Central Google Scholar 1.
Kashyap, R. et al. Individual-specific fMRI-subspaces improve functional connectivity prediction of behavior. Neuroimage 189, 804–812 (2019).
Article PubMed Google Scholar 1.
Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 22, 289–296 (2019).
Article PubMed CAS Google Scholar 1.
Liu, X., Chang, C. & Duyn, J. H. Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns. Front. Syst. Neurosci. 7, 101 (2013).
Article PubMed PubMed Central Google Scholar 1.
Liu, X. & Duyn, J. H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc. Natl Acad. Sci. USA 110, 4392–4397 (2013).
Article PubMed PubMed Central CAS Google Scholar 1.
Tagliazucchi, E., Balenzuela, P., Fraiman, D. & Chialvo, D. R. Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 3, 15 (2012).
Article PubMed PubMed Central Google Scholar 1.
Abbas, K. et al. GEFF: graph embedding for functional fingerprinting. Neuroimage 221, 117181 (2020).
Article PubMed Google Scholar 1.
Amico, E. & Goñi, J. The quest for identifiability in human functional connectomes. Sci. Rep. 8, 8254 (2018).
Article PubMed PubMed Central Google Scholar 1.
Bari, S., Amico, E., Vike, N., Talavage, T. M. & Goñi, J. Uncovering multi-site identifiability based on resting-state functional connectomes. Neuroimage 202, 115967 (2019).
Article PubMed Google Scholar 1.
Sripada, C. et al. Basic units of inter-individual variation in resting state connectomes. Sci. Rep. 9, 1900 (2019).
Article PubMed PubMed Central Google Scholar 1.
Svaldi, D. O. et al. Optimizing differential identifiability improves connectome predictive modeling of cognitive deficits from functional connectivity in Alzheimer’s disease. Hum. Brain Mapp. 42, 3500–3516 (2021).
Article PubMed PubMed Central Google Scholar 1.
Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).
Article PubMed Google Scholar 1.
Poldrack, R. A. et al. A phenome-wide examination of neural and cognitive function. Sci. Data 3, 160110 (2016).
Article PubMed PubMed Central CAS Google Scholar 1.
Noble, S. et al. Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cereb. Cortex 27, 5415–5429 (2017).
Article PubMed PubMed Central Google Scholar 1.
Greene, A. S. et al. Brain–phenotype models fail for individuals who defy sample stereotypes. Nature 609, 109–118 (2022).
Article PubMed PubMed Central CAS Google Scholar 1.
da Silva Castanheira, J., Orozco Perez, H. D., Misic, B. & Baillet, S. Brief segments of neurophysiological activity enable individual differentiation. Nat. Commun. 12, 5713 (2021).
Article PubMed PubMed Central Google Scholar 1.
Faskowitz, J., Esfahlani, F. Z., Jo, Y., Sporns, O. & Betzel, R. F. Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nat. Neurosci. 23, 1644–1654 (2020).
Article PubMed CAS Google Scholar 1.
Fitzgerald, B. et al. Longitudinal changes in resting state fMRI brain self-similarity of asymptomatic high school American football athletes. Sci. Rep. 14, 1747 (2024).
Article PubMed PubMed Central CAS Google Scholar 1.
Mansour L, S., Seguin, C., Smith, R. E. & Zalesky, A. Connectome spatial smoothing (CSS): concepts, methods, and evaluation. Neuroimage 250, 118930 (2022).
Article PubMed Google Scholar 1.
Sareen, E. et al. Exploring MEG brain fingerprints: evaluation, pitfalls, and interpretations. Neuroimage 240, 118331 (2021).
Article PubMed Google Scholar 1.
Sorrentino, P. et al. Clinical connectome fingerprints of cognitive decline. Neuroimage 238, 118253 (2021).
Article PubMed Google Scholar 1.
Van De Ville, D., Farouj, Y., Preti, M. G., Liégeois, R. & Amico, E. When makes you unique: temporality of the human brain fingerprint. Sci. Adv. 7, eabj0751 (2021).
Article PubMed Google Scholar 1.
Airan, R. D. et al. Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI. Hum. Brain Mapp. 37, 1986–1997 (2016).
Article PubMed PubMed Central Google Scholar 1.
Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 83, 550–558 (2013).
Article PubMed Google Scholar 1.
Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).
Article PubMed PubMed Central CAS Google Scholar 1.
Mueller, S. et al. Reliability correction for functional connectivity: theory and implementation. Hum. Brain Mapp. 36, 4664–4680 (2015).
Article PubMed PubMed Central Google Scholar 1.
Koch, P. J. et al. Evaluating reproducibility and subject-specificity of microstructure-informed connectivity. Neuroimage 258, 119356 (2022).
Article PubMed Google Scholar 1.
Bridgeford, E. W. et al. Eliminating accidental deviations to minimize generalization error and maximize replicability: applications in connectomics and genomics. PLoS Comput. Biol. 17, e1009279 (2021).
Article PubMed PubMed Central CAS Google Scholar 1.
Biswal, B., Zerrin Yetkin, F., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).
Article PubMed CAS Google Scholar 1.
Hong, S.-J. et al. Toward a connectivity gradient-based framework for reproducible biomarker discovery. Neuroimage 223, 117322 (2020).
Article PubMed CAS Google Scholar 1.
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
Article PubMed PubMed Central CAS Google Scholar 1.
Ye, J. et al. Altered brain dynamics across bipolar disorder and schizophrenia during rest and task switching revealed by overlapping brain states. Biol. Psychiatry 94, 580–590 (2023).
Article PubMed PubMed Central Google Scholar 1.
Uddin, L. Q. Bring the noise: reconceptualizing spontaneous neural activity. Trends Cogn. Sci. 24, 734–746 (2020).
Article PubMed PubMed Central Google Scholar 1.
Poldrack, R. A., Mumford, J. A. & Nichols, T. E. Handbook of Functional MRI Data Analysis (Cambridge Univ. Press, 2011). 1.
Monti, M. Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front. Hum. Neurosci. 5, 28 (2011).
Article PubMed PubMed Central Google Scholar 1.
Camp, C. C., Noble, S., Scheinost, D., Stringaris, A. & Nielson, D. M. Test–retest reliability of functional connectivity in adolescents with depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 9, 21–29 (2024).
Shirer, W. R., Jiang, H., Price, C. M., Ng, B. & Greicius, M. D. Optimization of rs-fMRI pre-processing for enhanced signal–noise separation, test–retest reliability, and group discrimination. Neuroimage 117, 67–79 (2015).
Article PubMed Google Scholar 1.
Strother, S. et al. Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. Neuroimage 23, S196–S207 (2004).
Article PubMed Google Scholar 1.
Busch, E. L. et al. Multi-view manifold learning of human brain-state trajectories. Nat. Comput. Sci. 3, 240–253 (2023).
Article PubMed PubMed Central Google Scholar 1.
Abbas, K. et al. Geodesic distance on optimally regularized functional connectomes uncovers individual fingerprints. Brain Connect. 11, 333–348 (2021).
Article PubMed PubMed Central Google Scholar 1.
Venkatesh, M., Jaja, J. & Pessoa, L. Comparing functional connectivity matrices: a geometry-aware approach applied to participant identification. Neuroimage 207, 116398 (2020).
Article PubMed Google Scholar 1.
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
Article PubMed Google Scholar 1.
Lutkenhoff, E. S. et al. Optimized brain extraction for pathological brains (optiBET). PLoS ONE 9, e115551 (2014).
Article PubMed PubMed Central Google Scholar 1.
Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).
Article PubMed PubMed Central Google Scholar 1.
Friedman, L. et al. Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. Neuroimage 32, 1656–1668 (2006).
Article PubMed Google Scholar 1.
Scheinost, D., Papademetris, X. & Constable, R. T. The impact