References
Slonim, D. A. et al. Facing change: using automated facial expression analysis to examine emotional flexibility in the treatment of depression. Adm. Policy Ment. Health Ment. Health Serv. Res. 51, 501–508 (2024).
Cohn, J. F. et al. Detecting depression from facial actions and vocal prosody. In *P…
References
Slonim, D. A. et al. Facing change: using automated facial expression analysis to examine emotional flexibility in the treatment of depression. Adm. Policy Ment. Health Ment. Health Serv. Res. 51, 501–508 (2024).
Cohn, J. F. et al. Detecting depression from facial actions and vocal prosody. In Proc. 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops 1–7 (IEEE, 2009). 1.
Scherer, S. et al. Automatic audiovisual behavior descriptors for psychological disorder analysis. Image Vis. Comput. 32, 648–658 (2014).
Cummins, N. et al. A review of depression and suicide risk assessment using speech analysis. Speech Commun. 71, 10–49 (2015).
Chim, J. et al. Overview of the CLPsych 2024 shared task: leveraging large language models to identify evidence of suicidality risk in online posts. In Proc. 9th Workshop on Computational Linguistics and Clinical Psychology (eds Yates, A. et al.) 177–190 (Association for Computational Linguistics, 2024). 1.
Langer, J. K., Lim, M. H., Fernandez, K. C. & Rodebaugh, T. L. Social anxiety disorder is associated with reduced eye contact during conversation primed for conflict. Cogn. Ther. Res. 41, 220–229 (2017).
Shafique, S. et al. Towards automatic detection of social anxiety disorder via gaze interaction. Appl. Sci. 12, 12298 (2022).
Kathan, A. et al. The effect of clinical intervention on the speech of individuals with PTSD: features and recognition performances. In Proc. INTERSPEECH (eds Harte, N. et al.) 4139–4143 (ISCA, 2023). 1.
Hu, J., Zhao, C., Shi, C., Zhao, Z. & Ren, Z. Speech-based recognition and estimating severity of PTSD using machine learning. J. Affect. Disord. 362, 859–868 (2024).
Gideon, J., Provost, E. M. & McInnis, M. Mood state prediction from speech of varying acoustic quality for individuals with bipolar disorder. In Proc. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2359–2363 (IEEE, 2016). 1.
Gilanie, G. et al. A robust method of bipolar mental illness detection from facial micro expressions using machine learning methods. Intell. Autom. Soft Comput. 39, 57–71 (2024).
Sahili, Z. A., Patras, I. & Purver, M. Multimodal machine learning in mental health: a survey of data, algorithms and challenges. Preprint at https://arxiv.org/abs/2407.16804 (2024). 1.
Rodrigues Makiuchi, M., Warnita, T., Uto, K. & Shinoda, K. Multimodal fusion of BERT-CNN and gated CNN representations for depression detection. In Proc. 9th International on Audio/Visual Emotion Challenge and Workshop (eds Ringeval, T. et al.) 55–63 (Association for Computing Machinery, 2019). 1.
Baltrušaitis, T., Robinson, P. & Morency, L. P. OpenFace: an open source facial behavior analysis toolkit. In Proc. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) 1–10 (IEEE, 2016). 1.
Sadeghi, M. et al. Harnessing multimodal approaches for depression detection using large language models and facial expressions. npj Ment. Health Res. 3, 66 (2024).
Zhang, Z., Lin, W., Liu, M. & Mahmoud, M. Multimodal deep learning framework for mental disorder recognition. In Proc. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020) 344–350 (IEEE, 2020). 1.
Chuang, C. Y. et al. Multimodal assessment of schizophrenia symptom severity from linguistic, acoustic and visual cues. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 3469–3479 (2023).
Zhao, Z. & Wang, K. Unaligned multimodal sequences for depression assessment from speech. In Proc. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 3409–3413 (IEEE, 2022). 1.
Qin, J. et al. Mental-Perceiver: audio-textual multi-modal learning for estimating mental disorders. In Proc. AAAI Conference on Artificial Intelligence (eds Walsh, T. et al.) 39, 25029–25037 (AAAI, 2025). 1.
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance) (European Union, 2016). 1.
Health Insurance Portability and Accountability Act of 1996. Public law 104–191 (US Congress, 1996). 1.
Shokri, R., Stronati, M., Song, C. & Shmatikov, V. Membership inference attacks against machine learning models. In Proc. 2017 IEEE Symposium on Security and Privacy (SP) 3–18 (IEEE, 2017). 1.
Song, C. & Raghunathan, A. Information leakage in embedding models. In Proc. 2020 ACM SIGSAC Conference on Computer and Communications Security 377–390 (Association for Computing Machinery, 2020). 1.
Carlini, N., Liu, C., Erlingsson, Ú., Kos, J. & Song, D. The secret sharer: evaluating and testing unintended memorization in neural networks. In Proc. 28th USENIX Security Symposium (USENIX Security 19) (eds Heninger, N. & Traynor, P.) 267–284 (Association for Computing Machinery, 2019). 1.
Elmahdy, A., Inan, H. A. & Sim, R. Privacy leakage in text classification: A data extraction approach. In Proceedings of the Fourth Workshop on Privacy in Natural Language Processing 13–20 (Association for Computational Linguistics, 2022). 1.
Tang, B. et al. De-identification of clinical text via Bi-LSTM-CRF with neural language models. In Proc. AMIA Annual Symposium 2019, 857–863 (American Medical Informatics Association, 2020). 1.
Yue, X. & Zhou, S. PHICON: improving generalization of clinical text de-identification models via data augmentation. In Proc. 3rd Clinical Natural Language Processing Workshop (eds Rumshisky, A. et al.) 209–214 (Association for Computational Linguistics, 2020). 1.
Liu, Z. et al. DeID-GPT: Zero-shot medical text de-identification by GPT-4. Preprint at https://arxiv.org/abs/2303.11032 (2023). 1.
Flechl, M., Yin, S. C., Park, J. & Skala, P. End-to-end speech recognition modeling from de-identified data. In Proc. INTERSPEECH 2022 (eds Ko, H. & Hansen, J. H. L.) 1382–1386 (ISCA, 2022). 1.
Panariello, M. et al. The VoicePrivacy 2022 Challenge: progress and perspectives in voice anonymisation. IEEE/ACM Transactions on Audio, Speech and Language Processing Vol. 32, 3477–3491 (Association for Computing Machinery, 2024). 1.
Tomashenko, N. et al. The VoicePrivacy 2024 Challenge evaluation plan. Preprint at https://arxiv.org/abs/2404.02677 (2024). 1.
Singh, A., Fan, S. & Kankanhalli, M. Human attributes prediction under privacy-preserving conditions. In Proc. 29th ACM International Conference on Multimedia 4698–4706 (Association for Computing Machinery, 2021). 1.
Chen, Y. et al. SoulChat: improving LLMs’ empathy, listening and comfort abilities through fine-tuning with multi-turn empathy conversations. In Findings of the Association for Computational Linguistics: EMNLP 2023 (eds Bouamor, H. et al.) 1170–1183 (Association for Computational Linguistics, 2023). 1.
Wu, Y., Chen, J., Mao, K. & Zhang, Y. Automatic post-traumatic stress disorder diagnosis via clinical transcripts: a novel text augmentation with large language models. In Proc. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–5 (IEEE, 2023). 1.
Wang, R. et al. PATIENT-ψ: using large language models to simulate patients for training mental health professionals. In Proc. 2024 Conference on Empirical Methods in Natural Language Processing (eds Al-Onaizan, Y. et al.) 12772–12797 (Association for Computational Linguistics, 2024). 1.
Lee, S. et al. Cactus: towards psychological counseling conversations using cognitive behavioral theory. In Findings of the Association for Computational Linguistics: EMNLP 2024 (eds Al-Onaizan, Y. et al.) 14245–14274 (Association for Computational Linguistics, 2024). 1.
Chu, S. N. & Goodell, A. J. Synthetic patients: simulating difficult conversations with multimodal generative AI for medical education. Preprint at https://arxiv.org/abs/2405.19941 (2024). 1.
Abadi, M. et al. Deep learning with differential privacy. In Proc. 2016 ACM SIGSAC Conference on Computer and Communications Security 308–318 (Association for Computing Machinery, 2016). 1.
Dinh, M. H. & Fioretto, F. Context-aware differential privacy for language modeling. Preprint at https://arxiv.org/abs/2301.12288 (2023). 1.
Plant, R., Gkatzia, D. & Giuffrida, V. CAPE: Context-Aware Private Embeddings for private language learning. In Proc. 2021 Conference on Empirical Methods in Natural Language Processing (eds Moens, M.-F. et al.) 7970–7978 (Association for Computational Linguistics, 2021). 1.
Yu, D. et al. Differentially private fine-tuning of language models. In Proc. International Conference on Learning Representations 1–19 (OpenReview, 2022). 1.
Kerrigan, G., Slack, D. & Tuyls, J. Differentially private language models benefit from public pre-training. In Proc. Second Workshop on Privacy in NLP (eds Feyisetan, O. et al.) 39–45 (Association for Computational Linguistics, 2020). 1.
Chauhan, G., Chien, S., Thakkar, O., Thakurta, A. & Narayanan, A. Training large ASR encoders with differential privacy. In Proc. 2024 IEEE Spoken Language Technology Workshop (SLT) 102–109 (IEEE, 2024). 1.
Bu, Z., Wang, Y. X., Zha, S. & Karypis, G. Differentially private bias-term fine-tuning of foundation models. In Proc. 41st International Conference on Machine Learning 4730–4751 (Association for Computing Machinery, 2024). 1.
Morris, J., Chiu, J., Zabih, R. & Rush, A. M. Unsupervised text deidentification. In Findings of the Association for Computational Linguistics: EMNLP 2022 (eds Goldberg, Y. et al.) 4777–4788 (Association for Computational Linguistics, 2022). 1.
Yang, X. et al. A study of deep learning methods for de-identification of clinical notes at cross institute settings. In Proc. 2019 IEEE International Conference on Healthcare Informatics (ICHI) 1–3 (IEEE, 2019). 1.
Maouche, M. et al. A comparative study of speech anonymization metrics. In Proc. INTERSPEECH 2020 (eds Meng, H. et al.) 1708–1712 (ISCA, 2020). 1.
Rosenberg, H., Tang, B., Fawaz, K. & Jha, S. Fairness properties of face recognition and obfuscation systems. In Proc. 32nd USENIX Security Symposium (USENIX Security 23) (eds Calandrino, J. & Troncoso, C.) 7231–7248 (USENIX Association, 2023). 1.
Osorio-Marulanda, P. A. et al. Privacy mechanisms and evaluation metrics for synthetic data generation: a systematic review. IEEE Access 12, 88048–88074 (2024).
Murtaza, H. et al. Synthetic data generation: state of the art in health care domain. Comput. Sci. Rev. 48, 100546 (2023).
Sarmin, F. J., Sarkar, A. R., Wang, Y. & Mohammed, N. Synthetic data: revisiting the privacy-utility trade-off. Preprint at https://arxiv.org/abs/2407.07926 (2024). 1.
Miao, X., Tao, R., Zeng, C. & Wang, X. A benchmark for multi-speaker anonymization. In Proc. IEEE Transactions on Information Forensics and Security Vol. 20, 3819–3833 (IEEE, 2025). 1.
Qiu, H. & Lan, Z. Interactive agents: simulating counselor-client psychological counseling via role-playing LLM-to-LLM interactions. Preprint at https://arxiv.org/abs/2408.15787 (2024). 1.
Zhang, C. et al. CPsyCoun: a report-based multi-turn dialogue reconstruction and evaluation framework for Chinese psychological counseling. In Findings of the Association for Computational Linguistics: ACL 2024 (eds Ku, L.-W. et al.) 13947–13966 (Association for Computational Linguistics, 2024). 1.
Ghanadian, H., Nejadgholi, I. & Al Osman, H. Socially aware synthetic data generation for suicidal ideation detection using large language models. IEEE Access 12, 14350–14363 (2024).
Mehta, S. et al. Fake it to make it: using synthetic data to remedy the data shortage in joint multimodal speech-and-gesture synthesis. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 1952–1964 (IEEE, 2024). 1.
Mughal, M. H. et al. ConvoFusion: multi-modal conversational diffusion for co-speech gesture synthesis. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 1388–1398 (IEEE, 2024). 1.
Narayanan, A. & Shmatikov, V. Robust de-anonymization of large sparse datasets. In Proc. 2008 IEEE Symposium on Security and Privacy (SP 2008) 111–125 (IEEE, 2008). 1.
Nautsch, A. et al. Preserving privacy in speaker and speech characterisation. Comput. Speech Lang. 58, 441–480 (2019).
Markitantov, M. & Verkholyak, O. Automatic recognition of speaker age and gender based on deep neural networks. In Proc. International Conference on Speech and Computer (eds Salah, A. et al.) 327–336 (Springer, 2019). 1.
Shao, X. & Milner, B. Pitch prediction from MFCC vectors for speech reconstruction. In Proc. 2004 IEEE International Conference on Acoustics, Speech and Signal Processing 1, 1–97 (IEEE, 2004). 1.
Lim, J. & Kim, K. Wav2vec-VC: voice conversion via hidden representations of wav2vec 2.0. In Proc. ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 10326–10330 (IEEE, 2024). 1.
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016). 1.
Schroff, F., Kalenichenko, D. & Philbin, J. FaceNet: a unified embedding for face recognition and clustering. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 815–823 (IEEE, 2015). 1.
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Proc. Advances in Neural Information Processing Systems Vol. 25 (eds Bartlett, P. L. et al.) 1106–1114 (2012). 1.
Dosovitskiy, A. & Brox, T. Inverting visual representations with convolutional networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 4829–4837 (IEEE, 2016). 1.
Mai, G., Cao, K., Yuen, P. C. & Jain, A. K. On the reconstruction of face images from deep face templates. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1188–1202 (2018).
Wood, E. et al. 3D face reconstruction with dense landmarks. In Proc. European Conference on Computer Vision 160–177 (Association for Computing Machinery, 2022). 1.
Krishnamurthy, B. & Wills, C. E. On the leakage of personally identifiable information via online social networks. In Proc. 2nd ACM Workshop on Online Social Networks 7–12 (Association for Computing Machinery, 2009). 1.
Joshi, S. & Dua, M. Noise robust automatic speaker verification systems: review and analysis. Telecommun. Syst. 87, 845–886 (2024).
Jakubec, M., Jarina, R., Lieskovska, E. & Kasak, P. Deep speaker embeddings for speaker verification: review and experimental comparison. Eng. Appl. Artif. Intell. 127, 107232 (2024).
Kortli, Y., Jridi, M., Al Falou, A. & Atri, M. Face recognition systems: a survey. Sensors 20, 342 (2020).
Huber, M., Luu, A. T., Terhörst, P. & Damer, N. Efficient explainable face verification based on similarity score argument backpropagation. In Proc. IEEE/CVF Winter Conference on Applications of Computer Vision 4736–4745 (IEEE, 2024). 1.
Almutairi, Z. & Elgibreen, H. A review of modern audio deepfake detection methods: challenges and future directions. Algorithms 15, 155 (2022).
Shaaban, O. A., Yildirim, R. & Alguttar, A. A. Audio deepfake approaches. IEEE Access 11, 132652–132682 (2023).
Kietzmann, J., Lee, L. W., McCarthy, I. P. & Kietzmann, T. C. Deepfakes: trick or treat? Bus. Horiz. 63, 135–146 (2020).
Masood, M. et al. Deepfakes generation and detection: state-of-the-art, open challenges, countermeasures and way forward. Appl. Intell. 53, 3974–4026 (2023).
Gu, H. et al. Utilizing speaker profiles for impersonation audio detection. In Proc. 32nd ACM International Conference on Multimedia 1961–1970 (Association for Computing Machinery, 2024). 1.
Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A. & Ortega-Garcia, J. Deepfakes and beyond: a survey of face manipulation and fake detection. Inf. Fusion 64, 131–148 (2020).
Khalid, H., Tariq, S., Kim, M. & Woo, S. S. FakeAVCeleb: a novel audio-video multimodal deepfake dataset. In NeurIPS Datasets and Benchmarks (eds Vanschoren, J. & Yeung, S.-K.) 1–14 (2021). 1.
Mustak, M., Salminen, J., Mäntymäki, M., Rahman, A. & Dwivedi, Y. K. Deepfakes: deceptions, mitigations and opportunities. J. Bus. Res. 154, 113368 (2023).
Yan, B. et al. On protecting the data privacy of large language models (LLMs): a survey. Preprint at https://arxiv.org/abs/2403.05156 (2024). 1.
Li, Q., Zhang, Y., Ren, J., Li, Q. & Zhang, Y. You can use but cannot recognize: preserving visual privacy in deep neural networks. In Proc. Network and Distributed System Security (NDSS) Symposium 2024 1–18 (The Internet Society, 2024). 1.
Dernoncourt, F., Lee, J. Y., Uzuner, O. & Szolovits, P. De-identification of patient notes with recurrent neural networks. J. Am. Med. Inform. Assoc. 24, 596–606 (2017).
Kim, W., Hahm, S. & Lee, J. Generalizing clinical de-identification models by privacy-safe data augmentation using GPT-4. In Proc. 2024 Conference on Empirical Methods in Natural Language Processing (eds Kim, W. et al.) 21204–21218 (Association for Computational Linguistics, 2024). 1.
Dhingra, P. et al. Speech de-identification data augmentation leveraging large language model. In Proc. 2024 International Conference on Asian Language Processing (IALP) (eds Liu, R. et al.) 97–102 (IEEE, 2024). 1.
Baroud, I., Raithel, L., Möller, S. & Roller, R. Beyond de-identification: a structured approach for defining and detecting indirect identifiers in medical texts. In Proc. Sixth Workshop on Privacy in Natural Language Processing (eds Habernal, I. et al.) 75–85 (Association for Computational Linguistics, 2025). 1.
Balloccu, S., Schmidtová, P., Lango, M. & Dušek, O. Leak, cheat, repeat: data contamination and evaluation malpractices in closed-source LLMs. In Proc. 18th Conference of the European Chapter of the Association for Computational Linguistics (Vol. 1: Long Papers) (eds Graham, Y. & Purver, M.) 67–93 (Association for Computational Linguistics, 2024). 1.
Cohn, I. et al. Audio de-identification—a new entity recognition task. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies Vol. 2 (Industry Papers) (eds Loukina, A. et al.) 197–204 (Association for Computational Linguistics, 2019). 1.
Veerappan, C. S., Dhingra, P., Wang, D. Z. & Tong, R. SpeeDF—a speech de-identification framework. In TENCON 2024-2024 IEEE Region 10 Conference (TENCON) 31–34 (IEEE, 2024). 1.
Miao, X., Wang, X., Cooper, E., Yamagishi, J. & Tomashenko, N. Speaker anonymization using orthogonal householder neural network. IEEE*/*ACM Trans. Audio Speech Lang. Process. 31, 3681–3695 (2023).
Champion, P., Jouvet, D. & Larcher, A. Are disentangled representations all you need to build speaker anonymization systems? In Proc. INTERSPEECH 2022—Human and Humanizing Speech Technology 2793–2797 (ISCA, 2022). 1.
Shamsabadi, A. S. et al. Differentially private speaker anonymization. Proc. Priv. Enhancing Technol. 2023, 98–114 (2023).
Chandrasekaran, V. et al. Face-Off: adversarial face obfuscation. In Proc. Privacy Enhancing Technologies 369–390 (Privacy Enhancing Technologies Board, 2021). 1.
Cherepanova, V. et al. LowKey: leveraging adversarial attacks to protect social media users from facial recognition. In Proc. International Conference on Learning Representations (ICLR) 1–15 (OpenReview, 2021). 1.
Evtimov, I., Sturmfels, P. & Kohno, T. FoggySight: a scheme for facial lookup privacy. Proc. Priv. Enhancing Technol. 3, 204–226 (2021).
Shan, S. et al. Fawkes: protecting privacy against unauthorized deep learning models. In Proc. 29th USENIX Security Symposium (USENIX Security 20) (eds Capkun, S. & Roesner, F.) 1589–1604 (USENIX Association, 2020). 1.
Radiya-Dixit, E., Hong, S., Carlini, N. & Tramer, F. Data poisoning won’t save you from facial recognition. In Proc. International Conference on Learning Representations 1–21 (OpenReview, 2022). 1.
Yalçın, Ö. N., Utz, V. & DiPaola, S. Empathy through aesthetics: using AI stylization for visual anonymization of interview videos. In Proc. 3rd Empathy-Centric Design Workshop: Scrutinizing Empathy Beyond the Individual 63–68 (Association for Computing Machinery, 2024). 1.
Rosberg, F., Aksoy, E. E., Englund, C. & Alonso-Fernandez, F. FIVA: Facial Image and Video Anonymization and anonymization defense. In Proc. IEEE/CVF International Conference on Computer Vision 362–371 (IEEE, 2023). 1.
Kikuchi, H., Miyoshi, S., Mori, T. & Hernandez-Matamoros, A. A vulnerability in video anonymization–privacy disclosure from face-obfuscated video. In Proc. 2022 19th Annual International Conference on Privacy, Security & Trust (PST) 1–10 (IEEE, 2022). 1.
Zhao, Y. & Chen, J. A survey on differential privacy for unstructured data content. ACM Comput. Surv. 54, 207 (2022).
Wen, Y., Liu, B., Ding, M., Xie, R. & Song, L. IdentityDP: differential private identification protection for face images. Neurocomputing 501, 197–211 (2022).
Lozoya, D. et al. Generating mental health transcripts with SAPE (Spanish Adaptive Prompt Engineering). In Proc. 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol. 1: Long Papers) 5096–5113 (Association for Computational Linguistics, 2024). 1.
Qiu, H., He, H., Zhang, S., Li, A. & Lan, Z. SMILE: Single-turn to Multi-turn Inclusive Language Expansion via ChatGPT for mental health support. In Findings of the Association for Computational Linguistics: EMNLP 2024 (eds Al-Onaizan, Y. et al.) 615–636 (Association for Computational Linguistics, 2024). 1.
Yue, X. et al. Synthetic text generation with differential privacy: a simple and practical recipe. In Proc. 61st Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers) (eds Rogers, A. et al.) 1321–1342 (Association for Computational Linguistics, 2023). 1.
Nahid, M. M. H. & Hasan, S. B. SafeSynthDP: leveraging large language models for privacy-preserving synthetic data generation using differential privacy. Preprint at https://arxiv.org/abs/2412.20641 (2024). 1.
Sirdeshmukh, V. et al. Multichallenge: a realistic multi-turn conversation evaluation benchmark challenging to frontier LLMs. Preprint at https://arxiv.org/abs/2501.17399 (2025). 1.
Li, Y. A., Jiang, X., Darefsky, J., Zhu, G. & Mesgarani, N. StyleTalker: finetuning audio language model and style-based text-to-speech model for fast spoken dialogue generation. In Proc. First Conference on Language Modeling 1–16 (OpenReview, 2024). 1.
Ng, E. et al. From audio to photoreal embodiment: synthesizing humans in conversations. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 1001–1010 (IEEE, 2024). 1.
Dwork, C. & Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9, 211–407 (2014).
Article MathSciNet Google Scholar 1.
McMahan, B., Moore, E., Ramage, D., Hampson, S. & Arcas, B. A. Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics (eds Singh, A. & Zhu, X. (J.)) 1273–1282 (PMLR, 2017). 1.
Boenisch, F. et al. When the curious abandon honesty: federated learning is not private. In Proc. 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P) 175–199 (IEEE, 2023). 1.
Tomashenko, N., Mdhaffar, S., Tommasi, M., Estève, Y. & Bonastre, J. F. Privacy attacks for automatic speech recognition acoustic models in a federated learning framework. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 6972–6976 (IEEE, 2022). 1.
Kariyappa, S. et al. Cocktail party attack: breaking aggregation-based privacy in federated learning using independent component analysis. In International Conference on Machine Learning (eds Krause, A. et al.) 15884–15899 (PMLR, 2023). 1.
Nagy, B. et al. Privacy-preserving federated learning and its application to natural language processing. Knowl. Based Syst. 268, 110475 (2023).
Sun, L., Qian, J. & Chen, X. LDP-FL: practical private aggregation in federated learning with local differential privacy. In Proc. Thirtieth International Joint Conference on Artificial Intelligence (ed. Zhou, Z.-H.) 1571–1578 (International Joint Conferences on Artificial Intelligence Organization, 2021). 1.
Basu, P. et al. Benchmarking differential privacy and federated learning for BERT models. Preprint at https://arxiv.org/abs/2106.13973 (2021). 1.
Ravuri, V., Gutierrez-Osuna, R. & Chaspari, T. Preserving mental health information in speech anonymization. In Proc. 2022 10th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) 1–8 (IEEE, 2022). 1.
Pranjal, R. et al. Toward privacy-enhancing ambulatory-based well-being monitoring: investigating user re-identification risk in multimodal data. In Proc. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1–5 (IEEE, 2023). 1.
Sánchez, D., Batet, M. & Viejo, A. Utility-preserving privacy protection of textual healthcare documents. J. Biomed. Inform. 52, 189–198 (2014).
Goncalves, A. et al. Generation and evaluation of synthetic patient data. BMC Med. Res. Methodol. 20, 108 (2020).
Kuppa, A., Aouad, L. & Le-Khac, N. A. Towards improving privacy of synthetic datasets. In Proc. Annual Privacy Forum (eds Gruschka, N. et al.) 106–119 (Springer, 2021). 1.
Shi, J., Wang, D., Tesei, G. & Norgeot, B. Generating high-fidelity privacy-conscious synthetic patient data for causal effect estimation with multiple treatments. Front. Artif. Intell. 5, 918813 (2022).
Wu, S., Fei, H., Qu, L., Ji, W. & Chua, T. S. NExT-GPT: any-to-any multimodal LLM. In Proc. Forty-First International Conference on Machine Learning 53366–53397 (Association for Computing Machinery, 2024). 1.
Bagdasaryan, E., Poursaeed, O. & Shmatikov, V. Differential privacy has disparate impact on model accuracy. In Proc. Advances in Neural Information Processing Systems Vol. 32 (eds Wallach, H. M. et al.) 15453–15462 (2019). 1.
Kolekar, S. S., Richter, D. J., Bappi, M. I. & Kim, K. Advancing AI voice synthesis: integrating emotional expression in multi-speaker voice generation. In Proc. 2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) 193–198 (IEEE, 2024). 1.
Huang, S. et al. NAP2: a benchmark for naturalness and privacy-preserving text rewriting by learning from human. Preprint at https://arxiv.org/abs/2406.03749 (2024). 1.
Sun, C., van Soest, J. & Dumontier, M. Generating synthetic personal health data using conditional generative adversarial networks combining with differential privacy. J. Biomed. Inform. 143, 104404 (2023).
Qian, Z. et al. Synthetic data for privacy-preserving clinical risk prediction. Sci. Rep. 14, 25676 (2024).
Ziegler, J. D. et al. Multi-modal conditional GAN: data synthesis in the medical domain. In Proc. NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research 1–11 (2022). 1.
Xin, B. et al. Private FL-GAN: differential privacy synthetic data generation based on federated learning. In Proc. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2927–2931 (IEEE, 2020).