WeChat AI just dropped a paper called Continuous Autoregressive Language Models (CALM),it basically rethinks how LLMs generate text. Instead of predicting one token at a time from a discrete vocabulary (the slow, softmax-heavy way every GPT-style model works), CALM predicts continuous vectors that each represent multiple tokens.

These vectors are learned through a high-fidelity autoencoder that can compress, say, 4 tokens into one latent vector and reconstruct them with over 99.9% accuracy. So the model generates “semantic chunks” instead of words, cutting generation steps by 4× while keeping meaning intact.

Because the model operates in continuous space, there’s no softmax, no cross-entropy, and no perplexity.

Training uses an energy...

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help