Sep 19, 2025 — Greg Diamos

LLM-Deflate: Extracting LLMs Into Datasets

Large Language Models compress massive amounts of training data into their parameters. This compression is lossy but highly effective—billions of parameters can encode the essential patterns from terabytes of text. However, what’s less obvious is that this process can be reversed: we can systematically extract structured datasets from trained models that reflect their internal knowledge representation.

I’ve been working on this problem, and the results are promising. We’ve successfully applied this decompression technique to three popular open-source models and generated substantial…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help