Abstract

The laws of thermodynamics strongly restrict the performance of thermal machines. Standard thermodynamics, initially developed for uncorrelated macroscopic systems, does not hold for microscopic systems correlated with their environments. We here derive an exact formula for the efficiency of any cyclically driven quantum engine by using generalized laws of quantum thermodynamics that account for all possible correlations between all involved parties, including initial correlations. Furthermore, we demonstrate the existence of two basic modes of engine operation: the usual thermal case, where heat is converted into work, and an athermal regime, where work is extracted from entropic resources, such as system-bath correlations. In the latter regime, the efficiency is not boun…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help