Editor’s summary
Two different strategies can produce olefins from synthesis gas (syngas, a mixture of carbon monoxide and hydrogen) with fewer CO2 by-products over iron-based catalysts (see the Perspective by Saeys). Cai et al. fed trace amounts of bromomethane with syngas over iron-based catalysts. Surface-bound bromine interacted with iron active sites to inhibit water dissociation, carbon monoxide and oxygen atom recombination, and olefin hydrogenation, and enabled near-zero CO2 production and high α-olefin selectivity. In another study, Gao et al. found that a sodium-promoted FeCx@Fe3O4 core-shell nanoparticle catalyst could couple water-gas shift and syngas-to-olefins reactions in situ. Starting from syngas with low hydrogen/carbon monoxide ratios, the authors achie…
Editor’s summary
Two different strategies can produce olefins from synthesis gas (syngas, a mixture of carbon monoxide and hydrogen) with fewer CO2 by-products over iron-based catalysts (see the Perspective by Saeys). Cai et al. fed trace amounts of bromomethane with syngas over iron-based catalysts. Surface-bound bromine interacted with iron active sites to inhibit water dissociation, carbon monoxide and oxygen atom recombination, and olefin hydrogenation, and enabled near-zero CO2 production and high α-olefin selectivity. In another study, Gao et al. found that a sodium-promoted FeCx@Fe3O4 core-shell nanoparticle catalyst could couple water-gas shift and syngas-to-olefins reactions in situ. Starting from syngas with low hydrogen/carbon monoxide ratios, the authors achieved high olefin selectivity and hydrocarbon yield, along with a reduction in CO2 and water by-products that led to high hydrogen atom economy. —Phil Szuromi
Abstract
Sustainable production of fuels and olefins from syngas (carbon monoxide and hydrogen) through the Fischer-Tropsch synthesis process requires catalysts that deliver high selectivity, industrial productivity, and minimal carbon dioxide (CO2) emissions. Current industrial iron catalysts form substantial CO2 by-product that limits carbon efficiency. We report that introducing trace amounts [parts per million (ppm) level] of halogen-containing compounds into the feed gas can suppress CO2 formation using iron-based catalysts and boost olefin selectivity over paraffin and olefin productivity. Cofeeding 20 ppm bromomethane over an iron carbide catalyst decreased CO2 selectivity to <1% and increased olefin selectivity to ~85% among all carbon-containing products. Surface-bound halogens modulated the catalyst surface structure and selectively inhibited pathways responsible for CO2 generation and olefin hydrogenation. This strategy provides a simple, scalable, and broadly applicable route for carbon-efficient syngas conversion.
Access the full article
View all access options to continue reading this article.
Supplementary Materials
This PDF file includes:
Materials and Methods
Figs. S1 to S47
Tables S1 to S18
- Download
- 6.52 MB
References and Notes
1
K. T. Rommens, M. Saeys, Molecular views on Fischer–Tropsch synthesis. Chem. Rev. 123, 5798–5858 (2023).
2
X. Pan, F. Jiao, D. Miao, X. Bao, Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chem. Rev. 121, 6588–6609 (2021).
3
J. Li, Y. He, L. Tan, P. Zhang, X. Peng, A. Oruganti, G. Yang, H. Abe, Y. Wang, N. Tsubaki, Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 1, 787–793 (2018).
4
H. Zhao, J.-X. Liu, C. Yang, S. Yao, H.-Y. Su, Z. Gao, M. Dong, J. Wang, A. I. Rykov, J. Wang, Y. Hou, W.-X. Li, D. Ma, Synthesis of iron-carbide nanoparticles: Identification of the active phase and mechanism of Fe-based Fischer–Tropsch synthesis. CCS Chem. 3, 2712–2724 (2021).
5
P. Wang, W. Chen, F.-K. Chiang, A. I. Dugulan, Y. Song, R. Pestman, K. Zhang, J. Yao, B. Feng, P. Miao, W. Xu, E. J. M. Hensen, Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts. Sci. Adv. 4, eaau2947 (2018).
6
S. Lyu, L. Wang, Z. Li, S. Yin, J. Chen, Y. Zhang, J. Li, Y. Wang, Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer–Tropsch synthesis conditions. Nat. Commun. 11, 6219 (2020).
7
D. Wang, G. Liu, C. Zhang, C. Feng, J. Wu, S. Chen, W. Xiang, H. Huang, Z. Liu, N. Tsubaki, Insights into the mechanism of high CO2 selectivity over Co2C-based Fischer–Tropsch to olefins. ACS Catal. 15, 7028–7039 (2025).
8
X. Zhang, Z. Li, W. Sun, Y. Zhang, J. Li, L. Wang, Shielding the Hägg carbide by a graphene layer for ultrahigh carbon efficiency during syngas conversion. Proc. Natl. Acad. Sci. U.S.A. 121, e2407624121 (2024).
9
H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan, K. P. de Jong, Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335, 835–838 (2012).
10
P. Wang, F.-K. Chiang, J. Chai, A. I. Dugulan, J. Dong, W. Chen, R. J. P. Broos, B. Feng, Y. Song, Y. Lv, Q. Lin, R. Wang, I. A. W. Filot, Z. Men, E. J. M. Hensen, Efficient conversion of syngas to linear α-olefins by phase-pure χ-Fe5C2. Nature 635, 102–107 (2024).
11
Y. Xu, X. Li, J. Gao, J. Wang, G. Ma, X. Wen, Y. Yang, Y. Li, M. Ding, A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 371, 610–613 (2021).
12
F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).
13
F. Jiao, B. Bai, G. Li, X. Pan, Y. Ye, S. Qu, C. Xu, J. Xiao, Z. Jia, W. Liu, T. Peng, Y. Ding, C. Liu, J. Li, X. Bao, Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins. Science 380, 727–730 (2023).
14
E. de Smit, M. M. van Schooneveld, F. Cinquini, H. Bluhm, P. Sautet, F. M. F. de Groot, B. M. Weckhuysen, On the surface chemistry of iron oxides in reactive gas atmospheres. Angew. Chem. Int. Ed. 50, 1584–1588 (2011).
15
M. Ojeda, R. Nabar, A. U. Nilekar, A. Ishikawa, M. Mavrikakis, E. Iglesia, CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J. Catal. 272, 287–297 (2010).
16
F. Qian, J. Bai, Y. Cai, H. Yang, X.-M. Cao, X. Liu, X.-W. Liu, Y. Yang, Y.-W. Li, D. Ma, X.-D. Wen, Stabilized ε-Fe2C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis. Nat. Commun. 15, 5128 (2024).
17
X.-W. Liu, Z. Cao, S. Zhao, R. Gao, Y. Meng, J.-X. Zhu, C. Rogers, C.-F. Huo, Y. Yang, Y.-W. Li, X.-D. Wen, Iron carbides in Fischer–Tropsch synthesis: Theoretical and experimental understanding in epsilon-iron carbide phase assignment. J. Phys. Chem. C 121, 21390–21396 (2017).
18
X. W. Liu, S. Zhao, Y. Meng, Q. Peng, A. K. Dearden, C.-F. Huo, Y. Yang, Y.-W. Li, X.-D. Wen, Mössbauer spectroscopy of iron carbides: From prediction to experimental confirmation. Sci. Rep. 6, 26184 (2016).
19
C. Yang, H. Zhao, Y. Hou, D. Ma, Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 134, 15814–15821 (2012).
20
W. Ma, G. Jacobs, G. A. Thomas, W. D. Shafer, D. E. Sparks, H. H. Hamdeh, B. H. Davis, Fischer–Tropsch synthesis: Effects of hydrohalic acids in syngas on a precipitated iron catalyst. ACS Catal. 5, 3124–3136 (2015).
21
L. Zhong, F. Yu, Y. An, Y. Zhao, Y. Sun, Z. Li, T. Lin, Y. Lin, X. Qi, Y. Dai, L. Gu, J. Hu, S. Jin, Q. Shen, H. Wang, Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).
22
H. Yu, C. Wang, T. Lin, Y. An, Y. Wang, Q. Chang, F. Yu, Y. Wei, F. Sun, Z. Jiang, S. Li, Y. Sun, L. Zhong, Direct production of olefins from syngas with ultrahigh carbon efficiency. Nat. Commun. 13, 5987 (2022).
23
M. Claeys, E. van Steen, T. Botha, R. Crous, A. Ferreira, A. Harilal, D. J. Moodley, P. Moodley, E. du Plessis, J. L. Visagie, Oxidation of Hägg carbide during high-temperature Fischer–Tropsch synthesis: Size-dependent thermodynamics and in situ observations. ACS Catal. 11, 13866–13879 (2021).
24
E. de Smit, F. Cinquini, A. M. Beale, O. V. Safonova, W. van Beek, P. Sautet, B. M. Weckhuysen, Stability and reactivity of ϵ−χ−θ iron carbide catalyst phases in Fischer–Tropsch synthesis: Controlling μC. J. Am. Chem. Soc. 132, 14928–14941 (2010).
25
C. Zhan, Q. Wang, L. Zhou, X. Han, Y. Wanyan, J. Chen, Y. Zheng, Y. Wang, G. Fu, Z. Xie, Z. Tian, Critical roles of doping Cl on Cu2O nanocrystals for direct epoxidation of propylene by molecular oxygen. J. Am. Chem. Soc. 142, 14134–14141 (2020).
26
C. J. Keturakis, M. Zhu, E. K. Gibson, M. Daturi, F. Tao, A. I. Frenkel, I. E. Wachs, Dynamics of CrO3–Fe2O3 catalysts during the high-temperature water-gas shift reaction: Molecular structures and reactivity. ACS Catal. 6, 4786–4798 (2016).
27
P. Zhai, C. Xu, R. Gao, X. Liu, M. Li, W. Li, X. Fu, C. Jia, J. Xie, M. Zhao, X. Wang, Y.-W. Li, Q. Zhang, X.-D. Wen, D. Ma, Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem. Int. Ed. 55, 9902–9907 (2016).
28
R. Gubo, D. G. Rodríguez, H. Wang, P. Ren, H. Xiao, X. Li, X. Q. Pang, X. Yu, J. Xu, X.-D. Wen, Y. Yang, Y.-W. Li, J. W. H. Niemantsverdriet, C. J. K.-J. Weststrate, Mechanistic insights into CO reactivity on iron-based catalysts: Role of surface atomic carbon. ACS Catal. 14, 14721–14732 (2024).
29
M. Zhu, I. E. Wachs, Iron-based catalysts for the high-temperature water–gas shift (HT-WGS) reaction: A review. ACS Catal. 6, 722–732 (2015).
30
F. Polo-Garzon, V. Fung, L. Nguyen, Y. Tang, F. Tao, Y. Cheng, L. L. Daemen, A. J. Ramirez-Cuesta, G. S. Foo, M. Zhu, I. E. Wachs, D. E. Jiang, Z. Wu, Elucidation of the reaction mechanism for high-temperature water gas shift over an industrial-type copper–chromium–iron oxide catalyst. J. Am. Chem. Soc. 141, 7990–7999 (2019).
31
H. Yan, X.-T. Qin, Y. Yin, Y.-F. Teng, Z. Jin, C.-J. Jia, Promoted Cu-Fe3O4 catalysts for low-temperature water gas shift reaction: Optimization of Cu content. Appl. Catal. B 226, 182–193 (2018).
32
Y. Liu, J.-F. Chen, J. Bao, Y. Zhang, Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal. 5, 3905–3909 (2015).
33
R. Wang, Y. Chen, X. Shang, B. Liang, X. Zhang, H. Zhuo, H. Duan, X. Li, X. Yang, X. Su, Y. Huang, T. Zhang, Reversing the selectivity of alkanes and alkenes in iron-based Fischer–Tropsch synthesis: The precise control and fundamental role of sodium promotor. ACS Catal. 14, 11121–11130 (2024).
34
V. P. Santos, A. Plauck, J. Gold, P. Majumdar, M. H. McAdon, T. Calverley, The complex chlorination effects on high selectivity industrial EO catalysts: Dynamic interplay between catalyst composition and process conditions. ACS Catal. 14, 10839–10852 (2024).
35
R. M. Lambert, R. L. Cropley, A. Husain, M. S. Tikhov, Halogen-induced selectivity in heterogeneous epoxidation is an electronic effect—fluorine, chlorine, bromine and iodine in the Ag-catalysed selective oxidation of ethene. Chem. Commun. 2003, 1184–1185 (2003).
36
L. C. Buelens, V. V. Galvita, H. Poelman, C. Detavernier, G. B. Marin, Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354, 449–452 (2016).
37
K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang, Y. Wang, Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. 55, 4725–4728 (2016).
38
F. Jiao, X. Pan, K. Gong, Y. Chen, G. Li, X. Bao, Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew. Chem. Int. Ed. 57, 4692–4696 (2018).
39
Y. Ni, Y. Liu, Z. Chen, M. Yang, H. Liu, Y. He, Y. Fu, W. Zhu, Z. Liu, Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst. ACS Catal. 9, 1026–1032 (2019).
40
Y. Zhu, X. Pan, F. Jiao, J. Li, J. Yang, M. Ding, Y. Han, Z. Liu, X. Bao, Role of manganese oxide in syngas conversion to light olefins. ACS Catal. 7, 2800–2804 (2017).
41
J. Su, H. Zhou, S. Liu, C. Wang, W. Jiao, Y. Wang, C. Liu, Y. Ye, L. Zhang, Y. Zhao, H. Liu, D. Wang, W. Yang, Z. Xie, M. He, Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nat. Commun. 10, 1297 (2019).
42
J. Lu, L. Yang, B. Xu, Q. Wu, D. Zhang, S. Yuan, Y. Zhai, X. Wang, Y. Fan, Z. Hu, Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer–Tropsch catalysts for lower olefins. ACS Catal. 4, 613–621 (2014).
43
O. Zhuo, L. Yang, F. Gao, B. Xu, Q. Wu, Y. Fan, Y. Zhang, Y. Jiang, R. Huang, X. Wang, Z. Hu, Stabilizing the active phase of iron-based Fischer–Tropsch catalysts for lower olefins: Mechanism and strategy. Chem. Sci. 10, 6083–6090 (2019).
44
Y. He, H. Shi, O. Johnson, B. Joseph, J. N. Kuhn, Selective and stable In-promoted Fe catalyst for syngas conversion to light olefins. ACS Catal. 11, 15177–15186 (2021).
45
J. Wang, Y. Xu, G. Ma, J. Lin, H. Wang, C. Zhang, M. Ding, Directly converting syngas to linear α-olefins over core–shell Fe3O4@MnO2 catalysts. ACS Appl. Mater. Interfaces 10, 43578–43587 (2018).
46
J. Xie, P. P. Paalanen, T. W. van Deelen, B. M. Weckhuysen, M. J. Louwerse, K. P. de Jong, Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nat. Commun. 10, 167 (2019).
47
T. Lin, P. Liu, K. Gong, Y. An, F. Yu, X. Wang, L. Zhong, Y. Sun, Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission. Appl. Catal. B 299, 120683 (2021).
48
B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
49
N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesinger, S. Tougaard, D. Morgan, J. Baltrusaitis, Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021).
50
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
51
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
52
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
53
H. Jónsson, G. Mills, K. W. Jacobsen, “Nudged elastic band method for finding minimum energy paths of transitions” in Classical and Quantum Dynamics in Condensed Phase Simulations, B. J. Berne, G. Ciccotti, D. F. Coker, Eds. (World Scientific, 1998), pp. 385–404.
54
G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).
55
G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).
56
E. Sanville, S. D. Kenny, R. Smith, G. Henkelman, Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 28, 899–908 (2007).
57
H. M. Torres Galvis, J. H. Bitter, T. Davidian, M. Ruitenbeek, A. I. Dugulan, K. P. de Jong, Iron particle size effects for direct production of lower olefins from synthesis gas. J. Am. Chem. Soc. 134, 16207–16215 (2012).