Under a Creative Commons license

Open access

Abstract

AI models have been expanding dramatically in size and the number of trainable parameters. This rapid growth has introduced many challenges, including increased computational costs and inefficiencies. Dynamic sparse training has emerged as a novel approach to address overparameterization and achieve energy-efficient artificial neural network (ANN) architectures. The highly efficient neuro-inspired sparse design remains underexplored compared to the significant focus on random topology searches. We propose the Topographical Sparse Mapping (TSM) method, inspired by the vertebrate visual system and convergent units. TSM introduces a sparse input layer for MLPs, significantly red…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help