Skip to main contentSkip to article
- View PDF
Under a Creative Commons license
Open access
Abstract
Progressive development of reading comprehension fluency from late childhood to early adolescence is remarkably linked to changes in the temporal dynamics of visual word recognition. EEG/ERP based measures of how an individual participant’s cortical timing for visual word recognition change over development are limited by low reliability. We present a novel approach to this challenge that individually models cortical latency to visual word forms by extracting phase values from Steady-State Visual Evoked Potentials (SSVEPs) for each participant. The resulting precise an…
Skip to main contentSkip to article
- View PDF
Under a Creative Commons license
Open access
Abstract
Progressive development of reading comprehension fluency from late childhood to early adolescence is remarkably linked to changes in the temporal dynamics of visual word recognition. EEG/ERP based measures of how an individual participant’s cortical timing for visual word recognition change over development are limited by low reliability. We present a novel approach to this challenge that individually models cortical latency to visual word forms by extracting phase values from Steady-State Visual Evoked Potentials (SSVEPs) for each participant. The resulting precise and reliable timing information for neural signatures underlying visual word form processes help account for the development of fluent reading comprehension. Typically developing readers (n=68), aged 8–15 years, viewed streams of four-character stimuli presented at 3 Hz, which evoked large significant power spikes from every participant. Linear phase by frequency functions across harmonics at 3, 6, and 9 Hz were consistent with a delay model, indicating a mean latency of 170 ms. Subject-level latencies revealed (a) high internal consistency (r=.94); (b) stability across variations in character-level (letters, unfamiliar pseudo-characters) and word-form level (words, nonwords, pseudofont strings) manipulations; (c) a linear relationship with age; and most remarkably, (d) a strong relationship with individual variation in the fluency of reading comprehension, that was (e) mediated by word naming speed. Results suggest a promising new approach for investigating the neural basis of reading development across several levels of processes, with temporal precision at the individual level that holds translational significance for promoting population-level fluency in reading comprehension.
Abbreviations
Reliable Components Analysis
(RCA)
steady-state visual evoked potentials
(SSVEP)
Keywords
EEG
SSVEP
N170
Reliable Components Analysis (RCA)
Visual Word Recognition
Latency
Typical developing children
These authors contributed equally to this work.
Published by Elsevier Ltd.