Published November 9, 2025 | Version v2
Journal article Open
Description
This paper is a pedagogical and rigorous synthesis of prior foundational works. It demonstrates that the probability density ρ = |ψ|² is a natural and necessary feature of relativistic quantum mechanics, not an arbitrary postulate. The work systematically derives the conserved currents of the Klein-Gordon and Dirac equations from their U(1) symmetry via Noether’s theorem. It grounds this derivation in the representation theory of the Poincaré group, arguing for the uniqueness of the ψ̄γ⁰ψ form for spin-1/2 particles. The analysis resolves the Klein-Gordon equation’s historical problems by reinterpreting its current as a charge density that correctly reduces to |ψ|² in the non-relativistic limit. The f…
Published November 9, 2025 | Version v2
Journal article Open
Description
This paper is a pedagogical and rigorous synthesis of prior foundational works. It demonstrates that the probability density ρ = |ψ|² is a natural and necessary feature of relativistic quantum mechanics, not an arbitrary postulate. The work systematically derives the conserved currents of the Klein-Gordon and Dirac equations from their U(1) symmetry via Noether’s theorem. It grounds this derivation in the representation theory of the Poincaré group, arguing for the uniqueness of the ψ̄γ⁰ψ form for spin-1/2 particles. The analysis resolves the Klein-Gordon equation’s historical problems by reinterpreting its current as a charge density that correctly reduces to |ψ|² in the non-relativistic limit. The framework is extended to many-body systems in configuration space. Within the de Broglie-Bohm interpretation, the paper proves the property of equivariance, showing quantum equilibrium is dynamically preserved. This synthesis provides a foundational bridge between quantum probability and special relativity’s symmetry principles. It deliberately avoids claims of a first-principles derivation from nothing, acknowledging the assumed complex field structure. The work serves as a crucial foundation for upcoming, more challenging papers on dynamical emergence of the quantum equilibrium. This establishes a solid basis for transforming the Quantum Equilibrium Hypothesis from a postulate into a dynamical attractor or potentially a mathematical necessity.
Files
Relativistic Necessity of the Born Rule.pdf
Files (323.2 kB)
| Name | Size | Download all |
|---|---|---|
| Relativistic Necessity of the Born Rule.pdf md5:ae0e0c03539085c225c7fa2b0785857a | 323.2 kB | Preview Download |
Additional details
2025-11-09
- [1] Weinberg, S. (2015). Lectures on Quantum Mechanics (2nd ed.). Cambridge University Press. [2] Peres, A. (1993). Quantum Theory: Concepts and Methods. Kluwer Academic. [3] Born, M. (1926). Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37(12), 863–867. [4] Ballentine, L. E. (1998). Quantum Mechanics: A Modern Development. World Scientific. [5] Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics, 6(6), 885–893. [6] Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. [7] de Broglie, L. (1928). La nouvelle dynamique des quanta. In Électrons et Photons: Rapports et Discussions du Cinquième Conseil de Physique (pp. 105-132). Gauthier-Villars. [8] Bohm, D. (1952). A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Physical Review, 85(2), 166–179. [9] Bohm, D. (1952). A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Physical Review, 85(2), 180–193. [10] Valentini, A. (1991). Signal-locality, uncertainty, and the subquantum H-theorem. I. Physics Letters A, 156(1-2), 5-11. [11] Dürr, D., Goldstein, S., & Zanghì, N. (1992). Quantum Equilibrium and the Origin of Absolute Uncertainty. Journal of Statistical Physics, 67(5-6), 843-907. [12] Goldstein, S. (2017). Bohmian Mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 Edition). [13] Norsen, T. (2017). Foundations of Quantum Mechanics: An Exploration of the Physical Meaning of Quantum Theory. Springer. [14] Noether, E. (1918). Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, 235–257. [15] Kosmann-Schwarzbach, Y. (2010). The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century. Springer. [16] Wigner, E. P. (1939). On unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics, 40(1), 149–204. [17] Weinberg, S. (1995). The Quantum Theory of Fields, Vol. 1: Foundations. Cambridge University Press. [18] Bargmann, V., & Wigner, E. P. (1948). Group theoretical discussion of relativistic wave equations. Proceedings of the National Academy of Sciences, 34(5), 211–223. [19] Foldy, L. L., & Wouthuysen, S. A. (1950). On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit. Physical Review, 78(1), 29–36. [20] Silenko, A. J. (2008). Foldy-Wouthuysen transformation and semiclassical limit for relativistic particles in strong external fields. Physical Review A, 77(1), 012116. [21] Dirac, P. A. M. (1930/1958). The Principles of Quantum Mechanics (4th ed.). Oxford University Press. [22] Sakurai, J. J., & Napolitano, J. (2017). Modern Quantum Mechanics (2nd ed.). Cambridge University Press. [23] Cohen-Tannoudji, C., Diu, B., & Laloë, F. (1977). Quantum Mechanics (Vols. 1-2). Wiley. [24] Holland, P. R. (1993). The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press. [25] Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics. Yale University Press. [26] Valentini, A., & Westman, H. (2005). Dynamical origin of quantum probabilities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2053), 253–272. [27] Towler, M. D., Russell, N. J., & Valentini, A. (2011). Time scales for dynamical relaxation to the Born rule. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2140), 990–1013. [28] Efthymiopoulos, C., Contopoulos, G., & Tzemos, A. C. (2020). Chaos in de Broglie-Bohm quantum mechanics. International Journal of Bifurcation and Chaos, 30(14), 2030039. [29] Allori, V., Dürr, D., Goldstein, S., & Zanghì, N. (2002). Seven steps towards the classical world. Journal of Optics B: Quantum and Semiclassical Optics, 4(4), S482–S488. [30] Colin, S., & Valentini, A. (2016). Primordial quantum nonequilibrium and large-scale cosmic anomalies. Physical Review D, 92(4), 043520. [31] Greiner, W. (2000). Relativistic Quantum Mechanics: Wave Equations (3rd ed.). Springer. [32] Bjorken, J. D., & Drell, S. D. (1964). Relativistic Quantum Mechanics. McGraw-Hill. [33] Peskin, M. E., & Schroeder, D. V. (1995). An Introduction to Quantum Field Theory. Westview Press. [34] Ryder, L. H. (1996). Quantum Field Theory (2nd ed.). Cambridge University Press. [35] Jackson, J. D. (1999). Classical Electrodynamics (3rd ed.). Wiley. [36] Dirac, P. A. M. (1931). Quantised singularities in the electromagnetic field. Proceedings of the Royal Society of London A, 133(821), 60–72. [37] Fock, V. (1926). Über die invariante Form der Wellen- und der Bewegungsgleichungen für einen geladenen Massenpunkt. Zeitschrift für Physik, 39(2-3), 226–232. [38] Gordon, W. (1926). Der Comptoneffekt nach der Schrödingerschen Theorie. Zeitschrift für Physik, 40(1-2), 117–133. [39] Pauli, W., & Weisskopf, V. (1934). Über die Quantisierung der skalaren relativistischen Wellengleichung. Helvetica Physica Acta, 7, 709–731. [40] Feynman, R. P. (1949). The theory of positrons. Physical Review, 76(6), 749–759. [41] Messiah, A. (1999). Quantum Mechanics (Vol. 2). Dover Publications. [42] Schwabl, F. (2007). Advanced Quantum Mechanics (4th ed.). Springer. [43] Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of the Royal Society of London A, 117(778), 610–624. [44] Dirac, P. A. M. (1928). The quantum theory of the electron. Part II. Proceedings of the Royal Society of London A, 118(779), 351–361. [45] Thaller, B. (1992). The Dirac Equation. Springer. [46] Bjorken, J. D., & Drell, S. D. (1965). Relativistic Quantum Fields. McGraw-Hill. [47] Streater, R. F., & Wightman, A. S. (1964). PCT, Spin and Statistics, and All That. Benjamin. [48] Schwinger, J. (1951). On gauge invariance and vacuum polarization. Physical Review, 82(5), 664–679. [49] Sexl, R. U., & Urbantke, H. K. (2001). Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics. Springer. [50] Pal, P. B. (2011). An Introductory Course of Particle Physics. CRC Press. [51] Pauli, W. (1946). Exclusion principle and quantum mechanics. In Nobel Lectures, Physics 1942–1962. Elsevier. [52] Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34(2), 470–491. [53] Everett, H., III. (1957). “Relative state” formulation of quantum mechanics. Reviews of Modern Physics, 29(3), 454–462. [54] Wallace, D. (2012). The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press. [55] Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Quantum probabilities as Bayesian probabilities. Physical Review A, 65(2), 022305. [56] Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters, 49(25), 1804–1807. [57] Kocsis, S., Braverman, B., Ravets, S., Stevens, M. J., Mirin, R. P., Shalm, L. K., & Steinberg, A. M. (2011). Observing the average trajectories of single photons in a two-slit interferometer. Science, 332(6034), 1170–1173. [58] Mahler, D. H., Rozema, L., Fisher, K., Vermeyden, L., Resch, K. J., Wiseman, H. M., & Steinberg, A. (2016). Experimental nonlocal and surreal Bohmian trajectories. Science Advances, 2(2), e1501466.