A Reinforcement Learning Based Universal Sequence Design for Polar Codes
machinelearning.apple.com·1d
🎯Vector Quantization
Preview
Report Post

To advance Polar code design for 6G applications, we develop a reinforcement learning-based universal sequence design framework that is extensible and adaptable to diverse channel conditions and decoding strategies. Crucially, our method scales to code lengths up to 2048, making it suitable for use in standardization. Across all (N,K)(N, K) configurations supported in 5G, our approach achieves competitive performance relative to the NR sequence adopted in 5G and yields up to a 0.2 dB gain over the beta-expansion baseline at N=2048N = 2048. We further highlight the key elements that enabled learning at scale: (i) incorporation of physical law constrained learning grounded in the universal partial order property of Polar codes, (ii) exploitation of the weak long term influence of…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help