Data availability
Requests for de-identified data can be directed at the corresponding author (T.H., talma@tlvmc.gov.il). All requests for data sharing will be reviewed by the Tel Aviv Sourasky Medical Center IRB committee to verify whether the request is subject to any intellectual property or confidentiality obligations. Requests will be reviewed on the basis of scientific merit, ethical review, available resources and regulatory requirements and will be responded within 90 days. After approval of a proposal, anonymized individual-level data will be made available for reuse in accordance with the signed consent IRB form. A signed data access agreement with the collaborator is required before accessing shared data.
References
Wager, T. D. & Atlas, L. Y. The neuβ¦
Data availability
Requests for de-identified data can be directed at the corresponding author (T.H., talma@tlvmc.gov.il). All requests for data sharing will be reviewed by the Tel Aviv Sourasky Medical Center IRB committee to verify whether the request is subject to any intellectual property or confidentiality obligations. Requests will be reviewed on the basis of scientific merit, ethical review, available resources and regulatory requirements and will be responded within 90 days. After approval of a proposal, anonymized individual-level data will be made available for reuse in accordance with the signed consent IRB form. A signed data access agreement with the collaborator is required before accessing shared data.
References
Wager, T. D. & Atlas, L. Y. The neuroscience of placebo effects: connecting context, learning and health. Nat. Rev. Neurosci. 16, 403β418 (2015).
Article CAS PubMed PubMed Central Google Scholar 1.
Gershman, S. J. & Uchida, N. Believing in dopamine. Nat. Rev. Neurosci. 20, 703β714 (2019).
Article CAS PubMed PubMed Central Google Scholar 1.
Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med 22, 940β944 (2016).
Article CAS PubMed Google Scholar 1.
Ben-Shaanan, T. L. et al. Modulation of anti-tumor immunity by the brainβs reward system. Nat. Commun. 9, 2723 (2018).
Article PubMed PubMed Central Google Scholar 1.
Kayama, T., Ikegaya, Y. & Sasaki, T. Phasic firing of dopaminergic neurons in the ventral tegmental area triggers peripheral immune responses. Sci. Rep. 12, 1447 (2022).
Article CAS PubMed PubMed Central Google Scholar 1.
Costi, S. et al. Peripheral immune cell reactivity and neural response to reward in patients with depression and anhedonia. Transl. Psychiatry 11, 565 (2021).
Article CAS PubMed PubMed Central Google Scholar 1.
Chat, I. K.-Y. et al. Goal-striving tendencies moderate the relationship between reward-related brain function and peripheral inflammation. Brain Behav. Immun. 94, 60β70 (2021). 1.
Treadway, M. T. et al. Association between interleukin-6 and striatal prediction-error signals following acute stress in healthy female participants. Biol. Psychiatry 82, 570β577 (2017).
Article CAS PubMed PubMed Central Google Scholar 1.
Sitaram, R. et al. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18, 86β100 (2017).
Article CAS PubMed Google Scholar 1.
Lubianiker, N. et al. Process-based framework for precise neuromodulation. Nat. Hum. Behav. 3, 436β445 (2019).
Article PubMed Google Scholar 1.
Lubianiker, N., Paret, C., Dayan, P. & Hendler, T. Neurofeedback through the lens of reinforcement learning. Trends Neurosci. 45, 579β593 (2022).
Article CAS PubMed Google Scholar 1.
KlΓΆbl, M. et al. Reinforcement and punishment shape the learning dynamics in fMRI neurofeedback. Front. Hum. Neurosci. 14, 304 (2020).
Article PubMed PubMed Central Google Scholar 1.
Oblak, E. F., Lewis-Peacock, J. A. & Sulzer, J. S. Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment. PLoS Comput. Biol. 13, e1005681 (2017).
Article PubMed PubMed Central Google Scholar 1.
Zoefel, B., Huster, R. J. & Herrmann, C. S. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage 54, 1427β1431 (2011).
Article PubMed Google Scholar 1.
Autenrieth, M., Kober, S. E., Neuper, C. & Wood, G. How much do strategy reports tell about the outcomes of neurofeedback training? A study on the voluntary up-regulation of the sensorimotor rhythm. Front. Hum. Neurosci. 14, 218 (2020).
Article PubMed PubMed Central Google Scholar 1.
Qiu, S. et al. Significant transcriptome and cytokine changes in hepatitis B vaccine non-responders revealed by genome-wide comparative analysis. Hum. Vaccin. Immunother. 14, 1763β1772 (2018).
Article PubMed PubMed Central Google Scholar 1.
Kirschner, M. et al. Ventral striatal hypoactivation is associated with apathy but not diminished expression in patients with schizophrenia. J. Psychiatry Neurosci. 41, 152β161 (2016).
Article PubMed Google Scholar 1.
Ohmann, H. A., Kuper, N. & Wacker, J. Examining the reliability and validity of two versions of the Effort-Expenditure for Rewards Task (EEfRT). PLOS ONE 17, e0262902 (2022).
Article CAS PubMed PubMed Central Google Scholar 1.
Gonen, T. et al. Human mesostriatal response tracks motivational tendencies under naturalistic goal conflict. Soc. Cogn. Affect. Neurosci. 11, 961β972 (2016).
Article PubMed PubMed Central Google Scholar 1.
Munshi, S. & Rosenkranz, J. A. Effects of peripheral immune challenge on in vivo firing of basolateral amygdala neurons in adult male rats. Neuroscience 390, 174β186 (2018).
Article CAS PubMed Google Scholar 1.
Zhu, X. et al. Somatosensory cortex and central amygdala regulate neuropathic pain-mediated peripheral immune response via vagal projections to the spleen. Nat. Neurosci. 27, 471β483 (2024).
Article CAS PubMed Google Scholar 1.
Boukezzi, S. et al. Exaggerated amygdala response to threat and association with immune hyperactivity in depression. Brain, Behav., Immun. 104, 205β212 (2022).
Article CAS PubMed Google Scholar 1.
Yin, L. et al. Inflammation and decreased functional connectivity in a widely-distributed network in depression: Centralized effects in the ventral medial prefrontal cortex. Brain Behav. Immun. 80, 657β666 (2019).
Article PubMed PubMed Central Google Scholar 1.
Hui, M. & Beier, K. T. Defining the interconnectivity of the medial prefrontal cortex and ventral midbrain. Front. Mol. 15, 971349 (2022). 1.
Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224β228 (2013).
Article CAS PubMed PubMed Central Google Scholar 1.
Glimcher, P. W. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc. Natl Acad. Sci. 108, 15647β15654 (2011).
Article CAS PubMed PubMed Central Google Scholar 1.
Lerner, T. N., Holloway, A. L. & Seiler, J. L. Dopamine, updated: reward prediction error and beyond. Curr. Opin. Neurobiol. 67, 123β130 (2021).
Article CAS PubMed Google Scholar 1.
Niv, Y. Cost, benefit, tonic, phasic. Ann. N. Y. Acad. Sci. 1104, 357β376 (2007).
Article PubMed Google Scholar 1.
Beeler, J. A. Tonic dopamine modulates exploitation of reward learning. Front. Behav. Neurosci. 4, 170 (2010). 1.
Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191, 507β520 (2007).
Article CAS PubMed Google Scholar 1.
Hahn, A. et al. Functional dynamics of dopamine synthesis during monetary reward and punishment processing. J. Cereb. Blood Flow. Metab. 41, 2973β2985 (2021).
Article CAS PubMed PubMed Central Google Scholar 1.
Schmidt, *Clemens et al. Multimodal assessment of dopamine synthesis and bold- signaling in reward and punishment processing - a hybrid fpet/fmri study. Int. J. Neuropsychopharmacol. 28, i39βi40 (2025).
Article PubMed Central Google Scholar 1.
Fields, H. L. & Margolis, E. B. Understanding opioid reward. Trends Neurosci. 38, 217β225 (2015).
Article CAS PubMed PubMed Central Google Scholar 1.
Laurent, V., Morse, A. K. & Balleine, B. W. The role of opioid processes in reward and decision-making. Br. J. Pharmacol. 172, 449β459 (2015).
Article CAS PubMed Google Scholar 1.
Bossong, M. G., Wilson, R., Appiah-Kusi, E., McGuire, P. & Bhattacharyya, S. Human striatal response to reward anticipation linked to hippocampal glutamate levels. Int. J. Neuropsychopharmacol. 21, 623β630 (2018).
Article CAS PubMed PubMed Central Google Scholar 1.
Benedetti, F. & Amanzio, M. Mechanisms of the placebo response. Pulm. Pharmacol. Therapeutics 26, 520β523 (2013).
Zubieta, J.-K. & Stohler, C. S. Neurobiological mechanisms of placebo responses. Ann. N. Y. Acad. Sci. 1156, 198β210 (2009).
Article CAS PubMed PubMed Central Google Scholar 1.
MacInnes, J. J., Dickerson, K. C., Chen, N. & Adcock, R. A. Cognitive neurostimulation: learning to volitionally sustain ventral tegmental area activation. Neuron 89, 1331β1342 (2016).
Article CAS PubMed PubMed Central Google Scholar 1.
Totah, N. K. B., Kim, Y. & Moghaddam, B. Distinct prestimulus and poststimulus activation of VTA neurons correlates with stimulus detection. J. Neurophysiol. 110, 75β85 (2013).
Article CAS PubMed PubMed Central Google Scholar 1.
Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E. M. & Graybiel, A. M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500, 575β579 (2013).
Article CAS PubMed PubMed Central Google Scholar 1.
Kahn, I. & Shohamy, D. Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans. Hippocampus 23, 187β192 (2013).
Article CAS PubMed Google Scholar 1.
Cauda, F. et al. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J. Cogn. Neurosci. 23, 2864β2877 (2011).
Article PubMed Google Scholar 1.
Hammes, J. et al. Dopamine metabolism of the nucleus accumbens and fronto-striatal connectivity modulate impulse control. Brain 142, 733β743 (2019).
Article PubMed Google Scholar 1.
Zunhammer, M., Gerardi, M. & Bingel, U. The effect of dopamine on conditioned placebo analgesia in healthy individuals: a double-blind randomized trial. Psychopharmacology 235, 2587β2595 (2018).
Article CAS PubMed Google Scholar 1.
Kunkel, A. et al. Dopamine has no direct causal role in the formation of treatment expectations and placebo analgesia in humans. PLOS Biol. 22, e3002772 (2024).
Article CAS PubMed PubMed Central Google Scholar 1.
Lange, T., Dimitrov, S., Bollinger, T., Diekelmann, S. & Born, J. Sleep after vaccination boosts immunological memory. J. Immunol. 187, 283β290 (2011).
Article CAS PubMed Google Scholar 1.
Yu, X. et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat. Neurosci. 22, 106β119 (2019).
Article CAS PubMed Google Scholar 1.
Schiller, M., Ben-Shaanan, T. L. & Rolls, A. Neuronal regulation of immunity: why, how and where? Nat. Rev. Immunol. 21, 20β36 (2021).
Article CAS PubMed Google Scholar 1.
Castro, D. C. & Bruchas, M. R. A motivational and neuropeptidergic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron 102, 529β552 (2019).
Article CAS PubMed PubMed Central Google Scholar 1.
van Dongen, Y. C. et al. Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens. Neuroscience 136, 1049β1071 (2005).
Article PubMed Google Scholar 1.
Cloninger, C. R., Przybeck, T. R. & Svrakic, D. M. The tridimensional personality questionnaire: U.S. normative data. Psychol. Rep. 69, 1047β1057 (1991).
Article CAS PubMed Google Scholar 1.
Costa, P. T. & McCrae, R. R. Normal personality assessment in clinical practice: the NEO Personality Inventory. Psychol. Assess. 4, 5 (1992).
Torrubia, R., Avila, C., MoltΓ³, J. & Caseras, X. The sensitivity to punishment and sensitivity to reward questionnaire (SPSRQ) as a measure of Grayβs anxiety and impulsivity dimensions. Personal. Individ. differences 31, 837β862 (2001).
Treadway, M. T., Buckholtz, J. W., Schwartzman, A. N., Lambert, W. E. & Zald, D. H. Worth the βEEfRTβ? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PloS one 4, e6598 (2009).
Article PubMed PubMed Central Google Scholar 1.
Knutson, B., Westdorp, A., Kaiser, E. & Hommer, D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12, 20β27 (2000).
Article CAS PubMed Google Scholar 1.
Kirschner, M. et al. Deficits in context-dependent adaptive coding of reward in schizophrenia. npj Schizophr. 2, 16020 (2016).
Article PubMed PubMed Central Google Scholar 1.
Murty, V. P. et al. Resting state networks distinguish human ventral tegmental area from substantia nigra. Neuroimage 100, 580β589 (2014).
Article PubMed Google Scholar 1.
Koush, Y. et al. OpenNFT: an open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis. NeuroImage 156, 489β503 (2017).
Article PubMed Google Scholar 1.
Lindquist, M. A. The statistical analysis of fMRI data. Statist. Sci. 23, (2008). 1.
Hinds, O. et al. Computing moment-to-moment BOLD activation for real-time neurofeedback. NeuroImage 54, 361β368 (2011).
Article PubMed Google Scholar 1.
Koush, Y., Zvyagintsev, M., Dyck, M., Mathiak, K. A. & Mathiak, K. Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI. NeuroImage 59, 478β489 (2012).
Article PubMed Google Scholar 1.
Bagarinao, E., Matsuo, K., Nakai, T. & Sato, S. Estimation of general linear model coefficients for real-time application. NeuroImage 19, 422β429 (2003).
Article CAS PubMed Google Scholar 1.
McCrae, R. R. & Costa, P. T. Empirical and theoretical status of the five-factor model of personality traits. SAGE Handb. Personal. Theory Assess. 1, 273β294 (2008).
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111β116 (2019).
Article CAS PubMed Google Scholar 1.
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. Neuroimage 62, 782β790 (2012).
Article PubMed Google Scholar 1.
Oldham, S. et al. The anticipation and outcome phases of reward and loss processing: a neuroimaging meta-analysis of the monetary incentive delay task. Hum. Brain Mapp. 39, 3398β3418 (2018).
Article PubMed PubMed Central Google Scholar 1.
Woolrich, M. Robust group analysis using outlier inference. NeuroImage 41, 286β301 (2008).
Article PubMed Google Scholar 1.
Beckmann, C. F., Jenkinson, M. & Smith, S. M. General multilevel linear modeling for group analysis in fMRI. NeuroImage 20, 1052β1063 (2003).
Article PubMed Google Scholar 1.
Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M. & Smith, S. M. Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage 21, 1732β1747 (2004).
Article PubMed Google Scholar 1.
R Core Team, R. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). 1.
Chikhi, S., Matton, N., Sanna, M. & Blanchet, S. Mental strategies and resting state EEG: effect on high alpha amplitude modulation by neurofeedback in healthy young adults. Biol. Psychol. 178, 108521 (2023).
Article PubMed [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mental%20strategies%20and%20resting%20state%20EEG%3A%20effect%20on%20high%20alpha%20amplitude%20modulation%20by%20neurofeedback%20in%20healthy%2