Optimizing robotic joints An optimized rolling contact joint. Credit: Wood Lab / Harvard SEAS

Consider the marvelous physics of the human knee. The largest hinge joint in the body, it has two rounded bones held together by ligaments that not only swing like a door, but also roll and glide over each other, allowing the knee to flex, extend, and balance.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have devised a new way to design knee-like joints in robots, called rolling contact joints, that could lead to better robotic grippers, more tailored assistive devices for humans, and robots that move …

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help