Training Design for Text-to-Image Models: Lessons from Ablations
huggingface.co·23h
🔢Kolmogorov Complexity
Preview
Report Post

Welcome back! This is the second part of our series on training efficient text-to-image models from scratch. In the first post of this series, we introduced our goal: training a competitive text-to-image foundation model entirely from scratch, in the open, and at scale. We focused primarily on architectural choices and motivated the core design decisions behind our model PRX. We also released an early, small (1.2B parameters) version of the model as a preview of what we are building (go try it if you haven’t already 😉).

In this post, we shift our focus from architecture to training. The goal is to document what actually moved the needle for us wh…

Similar Posts

Loading similar posts...

Keyboard Shortcuts

Navigation
Next / previous item
j/k
Open post
oorEnter
Preview post
v
Post Actions
Love post
a
Like post
l
Dislike post
d
Undo reaction
u
Recommendations
Add interest / feed
Enter
Not interested
x
Go to
Home
gh
Interests
gi
Feeds
gf
Likes
gl
History
gy
Changelog
gc
Settings
gs
Browse
gb
Search
/
General
Show this help
?
Submit feedback
!
Close modal / unfocus
Esc

Press ? anytime to show this help